
Mobile Touch-Free Interaction for Global Health

Nicola Dell, Krittika D’Silva, Gaetano Borriello
Department of Computer Science & Engineering

University of Washington
{nixdell, kdsilva, gaetano}@cs.washington.edu

ABSTRACT
Health workers in remote settings are increasingly using mo-
bile devices to assist with a range of medical tasks that may
require them to handle potentially infectious biological ma-
terial, and touching their mobile device in these scenarios is
undesirable or potentially harmful. To overcome this chal-
lenge, we present Maestro, a software-only gesture detec-
tion system that enables touch-free interaction on commod-
ity mobile devices. Maestro uses the built-in, forward-facing
camera on the device and computer vision to recognize users’
in-air gestures. Our key design criteria are high gesture
recognition rates and low power consumption. We describe
Maestro’s design and implementation and show that the sys-
tem is able to detect and respond to users’ gestures in real-
time with acceptable energy consumption and memory over-
heads. We also evaluate Maestro through a controlled user
study that provides insight into the performance of touch-
free interaction, finding that participants were able to make
gestures quickly and accurately enough to be useful for a
variety of motivating global health applications. Finally, we
describe the programming effort required to integrate touch-
free interaction into several open-source mobile applications
so that it can be used on commodity devices without requir-
ing changes to the operating system. Taken together, our
findings suggest that Maestro is a simple and practical tool
that could allow health workers in remote settings to interact
with their devices touch-free in demanding settings.

Keywords
Touch-free interaction; mobile device; smartphone; situa-
tional impairment; global health; mHealth.

1. INTRODUCTION
The field of mobile health is an emerging area of research
that encompasses the use of mobile devices, such as smart-
phones or tablet computers, to deliver health services and
information. The rapid increase in mobile device penetra-
tion throughout the world, and particularly in developing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
HotMobile ’15, February 12 - 13 2015, Santa Fe, NM, USA
ACM 978-1-4503-3391-7/15/02 ... $15.00
http://dx.doi.org/10.1145/2699343.2699355

Figure 1: Maestro uses the forward-facing camera
on mobile devices to detect users’ in-air gestures.

countries, has resulted in the creation of a large number
of mobile health applications designed to increase access to
healthcare and health-related information, improve disease
diagnosis and tracking, and provide health workers with on-
going medical education and training. However, many of the
medical tasks that these mobile applications are designed to
assist with also require health workers to handle potentially
infectious biological material. For example, health workers
using a mobile device to process rapid diagnostic tests for
infectious diseases must handle blood samples [4]. Although
health workers typically wear latex gloves when handling
this potentially harmful material, touching a mobile device
in these scenarios risks contamination of both the device
from the gloves, or the gloves from the device. In these situ-
ations, it would be beneficial if health workers were able to
interact with the device without touching it at all.

Fortunately, modern mobile devices come equipped with a
range of sensors, including cameras, that can be used to cre-
ate alternate methods of interaction with devices. A device’s
programming interface gives developers access to raw data
from these sensors, but significant programming effort from
the developer, unrelated to the application’s core function-
ality, is needed to facilitate a touch-free experience. To over-
come this barrier, we created Maestro, a software library for
Android that uses computer vision to detect in-air gestures
(see Figure 1). The Maestro API provides application devel-
opers with easy, high-level access to a variety of touch-free
gestures that can be detected using any commodity smart-
phone equipped with a basic forward-facing camera.

Many of the global health scenarios that we target lack re-
liable Internet connectivity. As a result, we focus on rec-
ognizing a minimal set of touch-free gestures using image

15

processing algorithms that run entirely on the device. This
simple and intuitive gesture set is appropriate for a variety
of global health applications, including mobile job aids for
clinical procedures and applications that assist with disease
diagnosis [4], and a range of diverse users can achieve high
enough gesture recognition rates to be practical in demand-
ing public health settings.

Key results from our work demonstrate that Maestro can
successfully enable touch-free interaction for a range of mo-
bile applications. In addition, the energy consumption and
memory usage overheads imposed by the system are accept-
able for practical use. The system is also capable of pro-
cessing image data obtained from the device’s camera fast
enough to detect and respond to users’ gestures in real-time,
with the overall speed of interaction limited by how fast users
move their hands, rather than by the speed of computation.
Furthermore, findings from a user evaluation with 18 partic-
ipants show that, within minutes of first being introduced to
Maestro’s gestures, many participants were able to sustain
speeds of over 40 correct touch-free gestures per minute. Fi-
nally, participants were also able to use Maestro’s touch-free
gestures to successfully perform a range of common inter-
actions (e.g., scrolling, swiping and selecting targets) and
navigate our target global health applications touch free.

This paper makes the following contributions: (1) the iden-
tification of key design principles required to make a touch-
free system appropriate for global health scenarios in low-
resource settings; (2) the design of Maestro, a software-only
gesture detection system that uses the forward-facing cam-
era on commodity mobile devices to detect and respond
to users’ in-air gestures; (3) an inspection-based evaluation
that details the programming effort required to add touch-
free interaction to several open-source mobile applications;
(4) a performance evaluation that quantifies the responsive-
ness of the system and the energy and memory usage over-
heads incurred by Maestro’s algorithms; and (5) a user eval-
uation that shows Maestro’s gestures are easy-to-learn and
that people are capable of using them to successfully nav-
igate a variety of user interfaces and realistic applications.
Our findings suggest that Maestro is a simple and practical
tool that allows users in a range of global health scenarios
to interact with commodity mobile devices touch free.

2. RELATED WORK
Gestural input for natural human-computer interaction has
for decades inspired research that explores potential future
scenarios [1]. We wanted to create a practical working so-
lution that runs on commodity mobile devices and that is
viable for immediate use in the field.

A large number of existing desktop-based vision systems fo-
cus on detecting and segmenting the hand from the back-
ground using shape or skin color [11]. Systems have been
designed to detect both static hand poses and dynamic ges-
tures [18] and many of these systems have been useful for
sign-language recognition [16]. The reliability of hand-tracking
systems depends heavily on the specific features used for
tracking and segmentation and on powerful machine-learning
algorithms for recognition [11]. The sophistication of these
algorithms enables many of these systems to recognize be-
tween 5 and 50 gestures. However, developing a vision-based

touch-free system for use by health workers in low-resource
settings requires a different approach for several reasons.
First, most prior solutions run on computationally power-
ful desktop computers. Our work focuses on mobile de-
vices with limited computational capabilities, which makes
it more difficult to meet real-time requirements using such
intensive approaches. In addition, these systems generally
expect users to dedicate both hands (and their full atten-
tion) to interacting with the system. However, in global
health scenarios, users’ hands may be occupied with other
tasks, such as holding a biological sample, and their atten-
tion should be primarily on patients and not on the system.
These constraints suggest that, rather than focusing on a
large and complex gesture set, a system targeting global
health scenarios should instead focus on recognizing simple,
intuitive and easy-to-remember gestures that can be per-
formed while the health worker’s hands are occupied with
other tasks and the device is on a surface.

A variety of other existing systems use additional hardware
to perform gesture detection. Glove-based systems, like Im-
ageGlove [10], require users to wear a special glove and map
motion changes in the glove to gestures. Another class of
systems use specialized sensing devices designed to be worn
on the body, like Abracadabra [5]. There are also systems
that augment commodity devices with additional sensors,
such as Hoverflow [7] and SideSight [3]. PalmSpace [8] uses
a depth camera to track 3D hand positions, while Pouke et
al. [14] use a Bluetooth-connected sensor attached to the
hand. Although the use of additional hardware can lead to
powerful solutions, users must purchase and set up the ad-
ditional components. This may be particularly challenging
for non-technical users in developing countries and the ad-
ditional components only increase the likelihood that some-
thing may get lost, broken, or exhaust its own batteries. By
using a self-contained commodity device, Maestro greatly
simplifies deployments and training.

Finally, a number of specialized consumer devices, like Leap
Motion’s Leap [9] enable touch-free interaction with large
displays or televisions. In addition, several specific mobile
device models, like the Samsung Galaxy S4 [15], also of-
fer some built-in touch-free capabilities. However, the al-
gorithms and APIs that provide this functionality have not
been documented or released, and no rigorous system or
user evaluations have been presented that describe the us-
ability of these systems. We wanted to create a solution
that works on a wide range of commodity devices that are
affordable and available in developing countries, rather than
force users to purchase a specific device model.

3. SCENARIO AND DESIGN PRINCIPLES
We focus on the following usage scenario for Maestro: a
health worker in a rural clinic in Africa has been issued
a mobile device to assist with medical duties. The health
worker enters a patient exam room to perform a medical
procedure, such as administering a rapid diagnostic test for
HIV [4]. She removes the mobile device from a pocket and
places it flat on the table. She also collects and prepares
any necessary medical equipment, like syringes, gauzes and
protective gloves. When ready, she starts the appropriate
mobile application on the device and activates touch-free in-
teraction. Then, she puts on a pair of protective latex gloves

16

and moves through the steps of the procedure, interacting
with the patient and with the device touch-free by passing
a hand over it as if “swiping in mid-air.” When instructed to
by the application, she collects the necessary blood sample
from the patient and places it on the test. After complet-
ing the procedure, she disposes of any infectious material,
removes her gloves, and can then touch the device again.

Our key design principles are informed by current literature
and the constraints presented by global health scenarios.

Camera-Based Input: We considered a variety of input modal-
ities, including sound and voice, before settling on camera-
based gesture detection. Clinics in developing countries are
usually noisy, busy and crowded, which could decrease the
accuracy of voice recognition. In addition, collecting blood
or biological samples from patients (especially children) may
result in crying or other noises that could interfere with a
voice or sound-based system. Moreover, we wanted to build
a system that works for diverse populations who speak differ-
ent languages. This made it undesirable to require users to
speak voice commands in a potentially unfamiliar language.
We also wanted to ensure that health workers are free to
speak clearly to patients, and issuing voice commands to
the system could interfere with health worker-patient con-
versations. Finally, camera-based input is already used in
clinical settings for a range of tasks, including data collection
[6], microscopy [2], and disease diagnosis [4].

Flexible and Easy-to-Learn: Users need to be able to interact
with a device while their hands are occupied, such as holding
a biological sample. Thus, Maestro does not rely on users
being able to make specific shapes with their fingers or hands
and instead targets a simple and flexible, although limited,
gesture set. Furthermore, to prevent contamination users
need not touch other objects, such as a stylus or tapping
a tabletop. Touch-free interaction should be intuitive and
easy to learn. We specifically target a simple gesture set
that people would quickly understand and easily remember
but provide basic navigation and selection primitives.

No Additional Hardware and Device-Independent: Requir-
ing that people purchase and setup additional hardware is
a significant barrier for many potential users in developing
countries and increases the likelihood that hardware will
get lost or broken or not be properly connected or pow-
ered. Maestro only uses hardware that is integral to a range
of commodity mobile devices readily available around the
world. Health programs in developing countries have diverse
needs and budgets, thus, we do not want to constrain users
to specific models (e.g., the Samsung Galaxy S4). Instead,
Maestro is a software-only solution that enables touch-free
interaction on a wide variety of different device models.

Local Computation and Calibration-Free: Many remote clin-
ics in developing countries do not have reliable Internet ac-
cess. Thus, all of the computation required to detect and
respond to touch-free gestures must be performed locally on
the device. Maestro targets global health applications that
will be used by a diverse range of people in a variety of sce-
narios. In addition, in many developing countries, multiple
users often share a single device. Thus, the system must
work “out of the box” for a wide range of people (including
different skin tones) and not require per user calibration.

Application-Level and Developer-Friendly: Enabling touch-
free interaction should not require users to make changes
to a device’s underlying operating system because many
commercially available mobile devices are locked by man-
ufacturers and system-level changes may void manufacturer
warranties. Maestro exposes a robust and usable API that
developers can use to enable touch-free interaction on exist-
ing applications with only minimal modifications.

4. MAESTRO
Touch-free interaction will be useful for a range of specific
applications in which it is undesirable or potentially harm-
ful for users to touch a device. We are not suggesting that
touch-free interaction will replace touch, nor have we tried to
fully replicate multi-touch gestures provided by many touch-
screen devices. Instead, Maestro provides much of the same
functionality as a desktop mouse, allowing users to move
a cursor around the screen, scroll, and select user inter-
face targets. We expect that this limited gesture set will
achieve simplicity and ease-of-use while also providing suffi-
cient expressivity and flexibility for our target applications
and many others. At a high-level, Maestro monitors image
data from a device’s front-facing camera in real-time and
detects five basic gestures: up, down, left, right and dwell.
The directional gestures are triggered by moving any object,
including a finger or hand, across the camera’s field of view
in the desired direction. The speed of the gesture is recorded
and can be used to add further expressivity to the motion
commands. The dwell gesture is triggered when the user
covers the camera’s field of view for a short period of time.
This gesture is used to indicate a click or tap.

4.1 Algorithm
In keeping with our design principles, Maestro’s gesture recog-
nition algorithm is relatively simple, both conceptually and
computationally. The first stage of the algorithm works by
comparing pairs of consecutive grayscale video frames cap-
tured by the forward-facing camera. For each pair of frames,
we calculate the absolute value of the per-pixel difference
between the images. This gives us the number of pixels at
which movement occurred between the two frames. We then
find the moment that the number of moving pixels exceeds a
dynamically adjusted threshold, and consider that point in
time to be the start of a gesture. Once the number of moving
pixels drops below the threshold, the gesture is considered
complete. To calculate an appropriate threshold, we keep a
running average of the amount of motion between consecu-
tive pairs of frames for the last few hundred frames and pick
a value that is substantially larger (e.g., 15% higher) than
the average current motion. We also calculate the duration
of the gesture by recording the time at which the motion
started and ended. Gestures that are classified as being ei-
ther too short or too long are filtered as noise. In addition,
we enforce a minimum between-gesture time to minimize
the chances that backswing, secondary, or recovery motions
are falsely detected as gestures. After detecting a gesture,
the next step is to determine whether the gesture is direc-
tional, or whether the user paused over the camera for a
dwell gesture. To differentiate between gesture types, we
analyze the average grayscale intensity of each frame that
makes up the gesture. In a directional gesture, the intensi-
ties of the frames get darker as the user moves towards the
camera, and then lighter again as the user moves away. By

17

contrast, with a dwell gesture, the intensities of the frames
get darker as the user covers the camera and stay dark until
the motion has stopped. To detect this difference, the sys-
tem again keeps a running average of the grayscale intensity
for the last few hundred frames. This average constitutes
a background intensity value. If the intensity of the final
gesture frame is sufficiently lower (e.g., 15% lower) than the
current background intensity, it is classified as a dwell ges-
ture. If a dwell gesture is not detected, the gesture is deemed
to be directional and to determine its direction, we compute
the average geometric coordinates of all the pixels at which
motion was detected at the start of the gesture. This com-
putation results in a single point at which movement was
centered when the gesture began. We then compute the
corresponding center of motion at the end of the gesture. If
the distance covered along one of the axes is sufficiently large
(e.g., 20% of the screen’s width), the gesture is classified as
being in that direction.

4.2 Mapping Gestures to Interactions
UI targets include buttons, checkboxes, and lists. Typically,
these have listeners that trigger an action when the ele-
ment is selected. Although users can touch anywhere on the
screen, it often only makes sense to touch a target. Target-
awareness has been exploited in prior work, including using
the tab key to navigate the focus of an application from one
target to the next. Maestro also exploits the focus property
of UI targets. Directional gestures can move the applica-
tion’s focus to the next target in the specified direction and
the dwell gesture used to select the target currently in focus.
In addition to navigating UI elements, touch-free gestures
can be directly mapped to horizontal and vertical scrolling.
The speed of the gesture can control the speed of scrolling.
A dwell gesture can be used to activate scrolling, and an-
other dwell or timeout used for deactivation. Finger-based
touch gestures, such as swipes and flicks, have become pop-
ular in touchscreen applications and provide a natural style
of user interaction. Maestro’s directional gestures provide a
similar interaction style and developers can choose to map
Maestro’s gestures (e.g., using their speed) to these finger-
based touch gestures to achieve similar effects.

4.3 Implementation
We implemented Maestro as an application-level software li-
brary on the Android platform. The image processing com-
ponents of the library were implemented in native code us-
ing OpenCV [13], an open-source computer vision library.
Gesture detection and classification were implemented using
Android’s Java framework and use the JNI to communicate
with OpenCV’s native image processing algorithms. All of
the computation is performed locally on the device.

5. ADDING TOUCH-FREE INTERACTION
TO EXISTING MOBILE APPLICATIONS

Maestro exposes an API that developers can use to map
touch-free gestures to UI interactions. Any application mod-
ule or activity that will respond to touch-free gestures should
contain a small amount of code to initialize the camera and
the UI, and five methods that specify the actions to be taken
when each of the five touch-free gesture types is detected.
This section describes the programming effort required to
integrate Maestro into several popular open-source applica-

Figure 2: Screenshots from existing applications
that we modified to enable touch-free interaction.

tions: Open Data Kit (ODK) Collect [6], the Vanilla media
player [17] and NewsBlur [12] (see Figure 2).

ODK Collect has thousands of users and is the preferred mo-
bile data collection tool for many global health applications
[6]. Users navigate through screens of the application using
swipe gestures, enter data, and read text. Vanilla [17] is a
popular media player that provides lists of albums, artists
and songs and an interface for playing tracks. NewsBlur
[12] is a personal newsreader that allows users to subscribe
to news feeds and to read, tag and share stories. We did not
attempt to make every module or activity in each application
touch free. Instead, we focused on activities in which touch-
free interaction would be most useful. For ODK Collect,
we added touch-free interaction to the activities for navigat-
ing menus and lists, swiping through screens, and entering,
editing and saving data. For Vanilla, we added touch-free in-
teraction to the activities for browsing and selecting artists,
albums and songs, and for playing and navigating tracks.
For NewsBlur, we added touch-free interaction to the activ-
ities for browsing, reading and navigating articles.

The code to integrate Maestro into these applications was
written by a second-year undergraduate who was familiar
with Maestro but not with the target applications. Enabling
touch-free interaction required a small amount of code to be
added to each module or activity that will respond to touch-
free gestures. This code can be divided into four tasks that
were common to all activities across all applications: (1)
system initialization of the camera (30 lines of code identi-
cal across all apps); (2) initialization to make UI elements
“focusable” (2-20 lines per activity); (3) focus navigation re-
quired four routines for each of the directional gestures (14-
20 lines of code); and, (4) target selection to handle dwell
gestures (4 lines - identical across all activities). Although
we realize that the amount of code added to each applica-
tion does not necessarily translate to ease of integration, we
wanted to include these measurements to provide readers
with a rough indication of the effort required (i.e., enabling
touch-free interaction required tens of lines of code rather
than hundreds or thousands of lines of code).

In summary, we added touch-free interaction to five activi-
ties in ODK Collect. These activities averaged 793 lines of
code each without Maestro. We added an average of 66 lines
of code to each activity, 34 of which were identical to all five
activities. In addition, two sets of two activities shared the
exact same code. We added touch-free interaction to two
activities in Vanilla that averaged 1008 lines of code each

18

without Maestro. We added an average of 59 lines to each
activity, 34 of which were common to both activities. Fur-
thermore, the code added to one of the Vanilla activities was
exactly the same as that added to two of the ODK Collect
activities. Finally, we added touch-free interaction to three
activities in NewsBlur that averaged 325 lines of code each
without Maestro. We added an average of 50 lines of code
to each activity, 34 of which were common to all activities.
In addition, two NewsBlur activities shared identical code.

6. EVALUATION
We performed experiments to evaluate the responsiveness
of the system as well as the energy and memory overhead
added by Maestro. Our experiments were conducted using
a Samsung Galaxy S3 device running Android v.4.1. All of
the computation was performed locally on the device using
a 1.4 GHz processor, 1 GB RAM and a 4.8 inch capacitive
touchscreen. Touch-free gestures were detected using the
built-in 1.9 mega-pixel forward-facing camera.

Responsiveness: We performed several experiments to quan-
tify the responsiveness of the system to the user. The data
for these experiments was collected by running Maestro on
the device and recording all of the system timing data for
five sets of 100 random touch-free gestures. Our data set
thus consisted of the timing data for a total of 15,199 cap-
tured image frames and 500 touch-free gestures. The system
is able to operate at 29 frames/second. Maestro’s per-frame
computation is 6.5ms including all image/motion process-
ing to determine a gesture’s start. An average of 184.5ms is
spent detecting the end of a gesture but this is mostly due
to human motion rather than computation. Only 0.2ms are
needed to classify the gesture and trigger the application
callback. Taken together, these findings indicate that the
system is able to perform all of the computation required
for gesture detection and classification in a fraction of the
time that it takes a user to move a hand over the camera.

Energy: Since mobile devices are battery powered, energy
consumption is a critical factor in assessing the viability of
a system for practical, daily use. To compute Maestro’s en-
ergy overhead, we measured the battery consumption of a
system running Maestro and continuously processing image
data for a period of four hours. We then measured the bat-
tery consumption of the same system without Maestro. In
both cases, the device was fully charged prior to the start of
the experiment. In addition, the screen was kept on for the
duration of the experiment and no other applications were
running. At the end of four hours of continuous processing,
the system running Maestro had a remaining battery level
of 28%, while the system without Maestro had a remain-
ing battery level of 53%. It is important to note that these
percentages represent the worst case energy consumption of
Maestro. In most cases, the device would also be running
other applications that would be consuming energy, and this
would lower the percentage of battery usage due to Maestro.
In addition, this experiment shows energy consumption re-
sulting from continuously running Maestro for a long period
of time. In reality, we expect that Maestro would be acti-
vated only when touch-free interaction is necessary, used for
a short period of time, and then deactivated when it is safe
for the user to touch the device again.

Figure 3: Screenshots from our usability experi-
ments: learning drills, UI navigation, and app use.

Memory Overhead: We ran each version of the application
for four hours and computed the maximum resident set size
in each case. Our findings show that Maestro imposes an 8%
memory overhead when compared to the same application
not using Maestro. On a mobile device with 1GB of RAM,
we do not consider this to be of significance.

User Evaluation: Although we anticipate that touch-free in-
teraction will primarily be useful in scenarios where it is
undesirable or potentially harmful to touch the device, we
wanted to provide readers with a way to understand the
performance of touch-free interaction in comparison to a
known point of reference: touch interaction. We expected
that touch-free interaction would be slower than touch, but
we wanted to quantify the difference to provide readers with
context and insight into the usability of touch-free interac-
tion. In addition, we were unable to identify a viable alter-
native touch-free system with which to compare Maestro.
We conducted a controlled laboratory study with 18 partic-
ipants to: (1) evaluate the speed and accuracy with which
users learn to interact touch free; (2) evaluate how well peo-
ple can use touch-free gestures to interact with user inter-
faces (UIs); and (3) understand whether people are able to
navigate a realistic clinical application - processing a rapid
diagnostic test for HIV - without touching the device. Par-
ticipants completed the experiments while seated with the
device flat on a table in front of them. They first watched
a two-minute video introducing the gesture techniques and
were given one minute to practice making gestures. They
then completed three study phases: learning, UI navigation,
and completing a clinical application touch-free (see Fig. 3).

Learning: As expected, participants made touch gestures
significantly faster than touch-free gestures, 0.66 seconds for
touch vs. 1.63 seconds for touch-free. Their accuracy as they
learned the touch-free gestures increased leveling out at only
7.5% errors vs. 1% for touch. The learning task encouraged
participants to make gestures as fast as possible and it was
encouraging that, within minutes of learning the touch-free
gestures, many participants were able to sustain speeds of
over 40 touch-free gestures per minute. This finding suggests
that touch-free gestures were intuitive and easy to learn.

Navigating: Participants took longer to navigate the UI
screens using touch-free gestures than touch gestures, spend-
ing an average of 1.70 seconds per screen with touch and 6.67
seconds with touch-free. The magnitude of the difference
(approximately 4x) between touch and touch-free gestures
was expected and can be explained by two factors. First,
successfully completing the tasks required participants to

19

make twice as many touch-free gestures as touch gestures.
Second, as we saw during the learning phase each touch-free
gesture takes roughly 2.5x as long as each touch gesture.

Using the App: For navigating the clinical application, we
expected to see a smaller time difference between touch and
touch-free interaction than in previous experiments for two
reasons. First, participants needed to make only one gesture
per screen for both methods. Second, rather than making
gestures as fast as possible, the experiment required par-
ticipants to read a sentence of text on each screen, which
increased the task time for both methods. There turned out
to be no detectable difference in the times taken to navigate
the app using touch and touch-free gestures as the time was
dominated by reading (doing the work) rather than by the
speed of interaction.

Participant Feedback: A common theme voiced by many par-
ticipants was “I was surprised how well [touch-free gestures]
worked. For how much this type of technology has been in
sci-fi for years, I’ve never seen it actually used. I always
suspected that’s because it’s not reliable, but it was.” Al-
though this positive feedback is highly encouraging, further
research is needed to assess the performance of the system in
real global health settings. Integrating Maestro into health
workers’ clinical routines will likely present a range of addi-
tional challenges that will need to be addressed. Moreover,
care will need to be taken to ensure that patients are com-
fortable with health workers using the system during clinical
procedures and that patient privacy is properly protected.

7. CONCLUSION
It is important to note that there is no requirement for an ap-
plication to choose between touch and touch-free interaction.
Instead, applications can incorporate both gesture types and
switch between them as circumstances warrant. Maestro’s
simplicity offers a number of advantages. Since the algo-
rithm looks for movement alone (not color or shape), it can
recognize any object, including a hand regardless of skin-
tone or covering. Maestro’s gesture set also allows novice
users to quickly interact touch-free with minimal training.
Finally, the computational simplicity of the algorithm makes
the system highly responsive. However, the current imple-
mentation also has several limitations. For example, the
gesture set is limited and does not provide an easy way to
simulate more advanced multi-touch gestures like pinch. In
addition, our current design is not well suited to text entry.
Instead, touch-free interaction is better suited to tasks like
scrolling and swiping, while text entry is better suited to
touch interaction. Another limitation is that adding touch-
free interaction to an application requires that the Maestro
library be incorporated into the application’s code. We are
unable to interact touch-free with closed-source applications
already installed on the device. Redirecting gesture input to
these applications would require system-level changes that
we have specifically avoided because of usage constraints for
public health scenarios in the developing world.

Health workers in global health scenarios are increasingly
using mobile devices to assist with a range of medical tasks.
However, touching the device when performing these tasks
may be undesirable or potentially harmful. We identified
key design principles for a mobile touch-free system that tar-
gets these scenarios. We then presented Maestro, a vision-

based system that recognizes in-air gestures using the built-
in forward-facing camera on commodity mobile devices. We
described the programming effort required to integrate touch-
free functionality into three widely-used mobile applications.
We also show that the system is capable of responding to
users’ gestures in real-time while imposing acceptable energy
and memory overheads. Finally, we presented a user evalua-
tion that shows people were able to quickly learn touch-free
gestures and use them to complete a variety of tasks without
touching the device. We conclude that Maestro is a practi-
cal tool that could allow users in global health scenarios to
interact with commodity mobile devices touch free.

8. ACKNOWLEDGEMENTS
This work was funded by NSF grant 1111433. We also thank
Leeran Raphaely and Jacob Wobbrock.

9. REFERENCES
[1] R. A. Bolt. “Put-that-there”: Voice and Gesture at the

Graphics Interface. In Computer Graphics and Interactive
Techniques, pages 262–270, 1980.

[2] D. Breslauer, R. Maamari, N. Switz, W. Lam, and
D. Fletcher. Mobile phone based clinical microscopy for
global health applications. Plos One, 4(7), 2009.

[3] A. Butler, S. Izadi, and S. Hodges. Sidesight: Multi-”touch”
interaction around small devices. In User Interface
Software and Technology, UIST ’08, pages 201–204, 2008.

[4] N. Dell, I. Francis, H. Sheppard, R. Simbi, and G. Borriello.
Field Evaluation of a Camera-Based Mobile Health System
in Low-Resource Settings. In Human-Computer Interaction
with Mobile Devices and Services, 2014.

[5] C. Harrison and S. E. Hudson. Abracadabra: Wireless,
high-precision, and unpowered finger input for very small
devices. In User Interface Software and Technology, 2009.

[6] C. Hartung, Y. Anokwa, W. Brunette, A. Lerer, C. Tseng,
and G. Borriello. Open Data Kit: Building Information
Services for Developing Regions. In Information and
Communication Technologies and Development, 2010.

[7] S. Kratz and M. Rohs. Hoverflow: Exploring around-device
interaction with ir distance sensors. In Human-Computer
Interaction with Mobile Devices and Services, 2009.

[8] S. Kratz, M. Rohs, D. Guse, J. Müller, G. Bailly, and
M. Nischt. Palmspace: Continuous around-device gestures
vs. multitouch for 3d rotation tasks on mobile devices. In
Working Conference on Advanced Visual Interfaces, 2012.

[9] Leap Motion. https://www.leapmotion.com.
[10] C. Maggioni. A novel gestural input device for virtual

reality. In Virtual Reality Annual Symposium, 1993.
[11] G. Murthy and R. Jadon. A Review of Vision-Based Hand

Gestures Recognition. Information Technology and
Knowledge Management, 2(2):405–410, 2009.

[12] NewsBlur. http://www.newsblur.com/.
[13] OpenCV. http://opencv.willowgarage.com/wiki/.

[14] M. Pouke, A. Karhu, S. Hickey, and L. Arhippainen. Gaze
tracking and non-touch gesture based interaction method
for mobile 3d virtual spaces. In Australian
Computer-Human Interaction Conference, 2012.

[15] Samsung Galaxy S4. http://www.samsung.com/GalaxyS4.
[16] T. Starner, A. Pentland, and J. Weaver. Real-time

american sign language recognition using desk and
wearable computer based video. IEEE Trans. Pattern
Anal. Mach. Intell., 20(12):1371–1375, 1998.

[17] Vanilla Media Player.
https://play.google.com/store/apps/details?id=ch.blink
enlights.android.vanilla.

[18] Z. Yang, Y. Li, Y. Zheng, W. Chen, and X. Zheng. An
interaction system using mixed hand gestures. In Asia
Pacific Conference on Computer Human Interaction, 2012.

20

