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ABSTRACT
Remote health monitoring and disease detection in the
developing world are hampered by a lack of accurate,
convenient and affordable diagnostic tests. Many of the tests
routinely administered in well-equipped clinical laboratories
are inappropriate for the settings encountered at the point
of care, where low-income patients may be best served. To
address this problem, medical researchers have developed
innovative rapid diagnostic tests (RDTs) that are capable
of detecting diseases at the point of care within a single
patient visit to a clinic. However, for these new diagnostic
technologies to be effective, tools must be developed to
support the health workers who will be responsible for
administering the tests and interpreting their results. This
paper describes the design and initial implementation of
ODK Diagnostics, a smartphone application that supports
health workers in three ways: (1) by facilitating the creation
of digital job aids that provide in-context assistance to
users administering RDTs, (2) by automatically interpreting
the test results and delivering the diagnosis, and (3) by
automating the data collected regarding the type and
outcome of the test. Our technical evaluation suggests that
the system is capable of accurately reading RDT results and
is ready to be field tested with health workers to ensure
that it is usable and appropriate for point-of-care settings in
developing countries.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Intensity,
color, photometry, and thresholding

General Terms
Design, Measurement, Human Factors

Keywords
Computing for development, DEV, ICTD, point-of-care
diagnostics, POC, rapid diagnostic tests, RDT, job aids,
protocols, computer vision, mobile phone, smartphone.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEV ’13 Jan 11-12, Bangalore, India
Copyright 2013 ACM 978-1-4503-1856-3/13/01 ...$15.00.

Figure 1: A low-cost, disposable rapid diagnostic
test for HIV showing a positive test result.

1. INTRODUCTION
One of the great challenges in science and engineering

today is to develop technologies to improve the health of
people in the poorest regions of the world. Providing
communities living in these regions with access to accurate,
convenient and affordable diagnostic tests could facilitate
the control of many infectious diseases. However, many
of the diagnostic tests that are routinely administered in
clinical laboratories in developed countries are inappropriate
for point-of-care settings in developing countries, where low-
income patients may be most accessible. As a result, these
patients do not have access to adequate medical testing and
suffer a high mortality rate from several diseases that could
otherwise be quickly diagnosed and cured.

Recent medical research has led to the emergence of
innovative rapid diagnostic tests (RDTs) that specifically
target the needs of patients in developing countries. These
low-cost, disposable tests are capable of diagnosing a variety
of common diseases, such as malaria, syphilis and HIV. An
example of an RDT for HIV is shown in Figure 1. RDTs
contain all of the elements required to process a biological
sample at the point of care, so that the sample does not need
to be refrigerated, protected, or transported. Additionally,
many of these tests run rapidly, allowing medical personnel
to view results and treat patients immediately. This speed
is advantageous because many rural patients travel long
distances to reach medical facilities and may be unable to
return easily to collect test results, delaying treatment.

However, although the potential benefits of these new
diagnostic technologies are immense, initial research has
shown that health workers often make mistakes when
administering the test or interpreting the results by eye
[14]. The number and variety of RDTs that are available
is also expanding rapidly, and different tests often require
slightly different procedures or interpretation. In addition,
medical researchers are in the process of developing more
sophisticated tests whose results require quantification or
time-sensitive analysis. For example, researchers at the
Burnet Institute are developing a rapid test to quantify a
patient’s CD4 count [27], while Stevens et al. demonstrated



Figure 2: A portion of the paper-based malaria RDT job aid that assists users with running the test.

that time-sensitive analysis of a microfluidic assay can
substantially increase the dynamic range of the test [26].
These tests will require health workers to simultaneously
manage the timing sequences for the test, monitor the rates
at which test signals are changing, and quantify the overall
result. Furthermore, manually recording data about the
RDTs administered, and updating patients’ records with the
test results can be a complex and time-consuming process.

These challenges suggest that there is a need for tools
to assist health workers with administering and interpreting
RDTs. One set of tools that has been developed to this
effect is paper-based job aids. A job aid is typically a one
or two-page instruction sheet that walks the user through
the process of running an RDT. Figure 2 shows part of a
paper-based job aid. Job aids have been shown to increase
the proportion of tests that are administered correctly [14].
However, paper-based job aids are difficult to distribute,
translate and update. Moreover, as the tasks become more
complex, the job aids become more difficult to navigate.

As an alternative to paper-based aids, prior research
has demonstrated the potential for mobile technologies to
strengthen healthcare systems [7] [19]. In particular, the
growing adoption of smartphones in developing countries
suggests that they may be an effective platform for a point-
of-care diagnostic system. Smartphones are portable and
battery powered, and come pre-installed with cameras that
are capable of capturing high-quality images and videos to
facilitate automated image analysis of the test results.

Broadly, this work seeks to answer the following research
question: How can we support health workers as they are
required to make increasingly complex diagnostic decisions
for an increasing number of diseases and medical conditions?
To address this challenge, we designed ODK Diagnostics,
a smartphone application that supports health workers in
three ways: (1) by facilitating the creation of digital job aids
that provide in-context assistance to users administering
RDTs, (2) by automatically interpreting the RDT results
using computer vision algorithms running on the phone, and
(3) by automating the process of collecting data regarding
the test administered and its outcome.

The main contribution of this paper is an end-to-
end solution for administering and analyzing a variety of
commercially available RDTs. Our solution provides several
key benefits over existing solutions, including:

• Digital job aids can provide in-context, on-demand
assistance to health workers in the field.

• Commercially available smartphones can be used to
analyze a wide variety of different tests, negating the
need for specialized reader devices.

• The system can handle both simple, binary tests and
more complex tests that may require quantification or
time-sensitive analysis.

• The system can easily keep a record of all the tests
administered and their outcomes for quality control
monitoring and evaluation.

• Analyzing the test results can become a standardized,
auditable and adjustable process without needing to
retrain users.

• New diagnostic tests can easily be added to the system
as they become available.

2. RELATED WORK
There is a wide range of research that demonstrates the

potential for mobile technologies to strengthen healthcare
systems in developing countries. Categories of interventions
include informing people about health issues [2], providing
remote medical consultation [24], and enabling data collec-
tion and retrieval [13]. We focus on two categories of related
research: systems that support health workers, and systems
for automatically processing point-of-care diagnostic tests.

2.1 Health Worker Support Systems
The lack of highly-trained medical professionals in many

developing countries means that community health workers
are often relied on to provide critical health services in rural
regions. This has resulted in a large amount of research
that focuses on improving health worker effectiveness. For
example, Rowe et al. [23] describe strategies for better
health worker training, while DeRenzi et al. [6] target health



worker reminder systems. Mobile devices have been used to
aid decision making in a number of different scenarios. Mhila
et al. [19] describe CommCare, a phone-based application
that supports health workers as they provide home-based
care and social support to patients. DeRenzi et al. [7]
developed eIMCI, an application that guides health workers
through a digital version of the Integrated Management of
Childhood Illness (IMCI) algorithm. These systems differ
from ODK Diagnostics in that they provide health workers
with a series of simple questions, and the treatment or
diagnosis is recommended based on the answers to these
questions, while ODK Diagnostics is more of an instructive
tool that guides users through the completion of tasks, like
drawing blood from a patient. Research has also shown that
job aids can help health workers perform preventative health
tasks and reduce the resources needed for training [14]. In
addition, job aids can also help health workers build patient
counseling skills, and have been found to promote patients’
adherence to medical regimens [9]. ODK Diagnostics aims
to combine the benefits of job aids with the advantages
of mobile technologies to create a point-of-care diagnostic
system that aids disease diagnosis in remote areas.

2.2 Automated Processing of Diagnostic Tests
There are a several other projects that couple image

processing with diagnostics tests. Mudanyali et. al [20]
have developed a smartphone-based RDT reader platform
that can work with several RDTs. Their platform differs
from ODK Diagnostics in a number of ways. First, although
the system works with a variety of RDTs, each test type
requires a custom built holder that fits tightly around the
test cartridge and clips it to the rest of the platform. In
contrast, the ODK Diagnostics stand is capable of fitting a
wide variety of RDTs that have different shapes and sizes
without the need for any additional parts. Their platform
also requires a plano-convex lens, three LED arrays, and
two AAA batteries to precisely control the environment
in which the test image is captured. ODK Diagnostics
does not require any of this additional hardware, which is
advantageous since requiring additional parts increases the
likelihood that something will get lost or broken and lower
the reliability of the system or render it non-functional.
Finally, Mudanyali et al. focus entirely on optically reading
the RDT results, and do not consider the human challenges
that administering RDTs may represent for lightly trained
health workers, whereas ODK Diagnostics aims to support
health workers with the process of administering RDTs
correctly in addition to automatically reading the results.

Dell et. al [5] built an application capable of automatically
quantifying diagnostic test data on a smartphone. The
application targets one sophisticated diagnostic test and
shows that the phone is capable of correctly analyzing time-
sensitive data and quantifying the test result. Although we
hope to target sophisticated tests like this in the future,
they are not yet ready to be field-tested or marketed
commercially. Therefore, we have built ODK Diagnostics to
work with today’s commercially available RDTs, and have
designed the system to be capable of handling more complex
tests as they become available. Our hope is to have a stable,
usable and tested platform already in place to which new,
more sophisticated tests can be easily added.

Other projects that utilize smartphones to read diagnostic
tests include Skannex [25], who market a proprietary test

reader system in which each test is marked with an
identifying barcode, and a paper-based dengue test that can
be imaged and processed by a smartphone [17].

3. DESIGN
We designed ODK Diagnostics to assist health workers

with administering and interpreting a variety of RDTs. We
wanted to create a platform that can be easily extended
to incorporate many RDTs of different types and formats
and so we have tried to minimize the technical knowledge
required to add a diagnostic test to the system. However,
we anticipate that the process of adding an RDT to the
system will not be done by the health worker who will
use the system, but rather by someone higher up in the
information hierarchy and then distributed to health workers
for use in the field. ODK Diagnostics aids health workers
in three ways: (1) by providing a variety of digital job aids
to give in-context assistance to users administering RDTs,
(2) by automatically analyzing the RDT and delivering
the diagnosis, and (3) by automating the data collection
regarding the type and outcome of the test. We have
designed these components so that they can be installed and
operated independently of each other, since some programs
may want to make use of digital job aids but not automatic
interpretation of RDTs, while some may elect to skip the
job aids and use only the component for automatically
interpreting RDTs.

3.1 Digital Job Aids for RDTs
A job aid is typically a one- or two-page instruction sheet

or poster that walks the user through a series of steps
to perform a specific task. Job aids range from covering
simple step-wise processes to more complex decision-making
including performing calculations along the way. In the
public health context in developing countries, job aids are
often designed to assist health workers who usually have
limited training, such as a single brief training session on a
particular procedure. In this regard, job aids are particularly
important in guiding health workers through procedures
they rarely perform or that are complex to conduct.
Research has shown that the use of job aids designed to
guide health workers through the process of administering
RDTs can significantly increase the proportion of tests that
are administered and interpreted correctly [14].

Traditionally, job aids for RDTs are paper-based docu-
ments that provide a step-by-step explanation of how to ad-
minister an RDT along with clearly worded instructions and
visual depictions that help guide the health worker through
the procedure. However, these paper-based job aids have a
number of limitations. They can get lost or damaged. They
need to be printed, transported and distributed to health
workers, which makes it difficult to easily update the ma-
terials or change the type of RDT being used, which could
be problematic since health workers might inadvertently be
referring to out-of-date or incorrect information in a paper-
based job aid. Furthermore, as the variety and complex-
ity of the RDTs used at the point of care increases, health
workers will be required to carry around and refer to a large
number of different paper-based job aids. Most importantly,
the procedure might be complex and require calculations or
decision-making that are difficult to follow on paper, par-
ticularly when a health worker is juggling other tasks and
interacting with one or more patients.



To overcome some of these limitations, we have designed
a system for creating digital, smartphone-based job aids.
The rapidly decreasing price of smartphones in developing
countries has made them attractive as a platform for a wide
variety of health applications, including data collection [13],
reminder systems [6] and decision support systems [7]. Using
the phone to also provide digital job aids that assist health
workers with point-of-care diagnostic tests will eliminate the
need for them to transport and protect paper-based job aids.
The digital job aid can be programmed to automatically
guide the health worker through the correct flow of steps
that apply to the particular RDT she is administering,
including providing accurate timing for events such as when
to read the RDT results, which will increase the likelihood
that the test will be administered and interpreted correctly.
Digital job aids will also be easier to distribute, update and
translate than paper-based job aids, provided each health
worker with a device is able to periodically visit an area with
Internet connectivity and download the requisite materials,
a now common situation in most developing countries. In
addition, smartphones are portable and have the capacity
to store a large number of job aids, so the device also serves
as an instantly accessible RDT instruction manual.

In this paper, we focus on digitally replicating several
widely used and WHO approved paper-based job aids, such
as the malaria RDT job aid (partially shown in Figure 2).
We rely on medical experts to create the appropriate job
aid content and are instead focused on building a system
that simplifies the process of creating and distributing the
job aids. However, the capabilities of the technology mean
that more sophisticated job aids could be created that use
a variety of additional media, like voice recordings or short
videos that demonstrate how to correctly complete tasks.

ODK Diagnostics also leverages the fact that many RDTs
share a number of common steps, such as asking the health
worker to put on latex gloves, or waiting a specific amount
of time after starting the test before reading the results. We
allow users to reuse and customize a set of basic job aid
template files, rather than requiring these common steps to
be reprogrammed every time a new job aid is created. Our
design also allows the digital job aids to be used either as a
standalone platform or in conjunction with our algorithm for
automatically interpreting the RDTs. The advantage of this
separation is that the system is not limited to the creation
of job aids for RDTs, but could also be used to create and
distribute supportive material for other medical procedures.

3.2 Optical Processing of RDTs
Although interpreting RDT results may appear to be

simple, research has shown that incorrect interpretation of
test results accounts for a large proportion of the errors
made by health workers when administering RDTs [14].
In addition, as more RDTs are developed for a wider
variety of diseases, the number of different RDTs that health
workers are required to use is expanding, and many of
these RDTs vary slightly in their interpretation, such as
having a different number of test lines that need to be read.
In addition, several companies are starting to manufacture
multi-RDTs that test for more than one disease on a single
cartridge [18], which increases the complexity of correctly
interpreting all of the tests’ results. Furthermore, more
sophisticated point-of-care diagnostic tests are now being
developed that will require the user to quantify the test

Figure 3: Low-cost 3D-printed platform used to
capture images of RDTs.

result [3] or record the rate of change of the test signal [26],
which is likely to be an error-prone process for lightly trained
health workers reading the test results by eye.

To address these challenges, we designed an algorithm
that automatically interprets the RDT results using com-
puter vision algorithms running on the phone. Although
our current implementation focuses on reading simple RDTs
that are already commercially available, we have designed
the system to be easily extended to more complex tests by
using a lightweight test description language to specify the
regions of interest on the RDT and how they should be in-
terpreted. Our goal is to have a platform for interpreting
more sophisticated RDTs already in place by the time these
tests become commercially available.

To make it easy for health workers to process RDTs
correctly, we designed and 3D-printed a small stand, shown
in Figure 3, that holds the phone in position above the RDT.
This stand ensures that users can interact with the system
without needing to pick up the phone, and we anticipate that
this will be advantageous for health workers who are busy
interacting with patients and handling RDTs and biological
samples. The stand design leaves the upper portion of the
phone exposed so that the system will work correctly with
different phone models and varying camera positions. In
addition, the position at which the RDT should be placed
below the camera is indicated by a rectangular ridge that
allows a variety of RDTs of different shapes and sizes to be
correctly positioned without needing to adjust the stand or
camera placement. In our mechanical design, we sought to
develop an approach that requires minimal handling (and
thus lowers risk of contamination of both the RDTs as well
as the stand and phone). In fact, we are also developing
techniques to operate the phone without physically touching
it (using audio, accelerometry, and vision). Finally, our
design does not require any additional lighting, sensors or
batteries to be attached to the phone. Instead, we normalize
the lighting of the RDT using a portion of the test strip
that does not contain any reactive agent and can therefore
be reliably compared to the reactive regions of the test.

3.3 Data Collection
Collecting timely and accurate data regarding the num-

ber, type and results of RDTs administered by health work-
ers is extremely important for a variety of reasons. First, de-



cision makers need to monitor consumption of RDTs so that
they can ensure health workers are supplied with the correct
number of tests to cover the patient population. Oversupply
of RDTs will result in expired tests that should be discarded
since they might produce inaccurate results if inadvertently
used to diagnose patients, while undersupply will result in
health workers being unable to diagnose patients since they
do not possess the relevant test. RDT consumption data is
also important for generating reports for donor and aid agen-
cies regarding the use of funds that they provided. Addition-
ally, providing quick access to accurate statistics regarding
the location and results of RDTs administered could help
decision makers to analyze the spread of infectious diseases
and facilitate the early detection of outbreaks.

RDT data is currently predominantly collected on paper
forms. A plethora of prior research discusses the limitations
of paper-based data collection [13] [22], and the benefits
provided by digital data collection solutions [19] [10]. Thus,
our design replaces paper-based collection of RDT data with
a digital data collection toolkit running on the device. The
type, location and outcome of the test can be collected
automatically by the software and stored locally on the
phone or uploaded to a remote database. This will
substantially decrease the time that it takes to make the
data available to decision makers and will also eliminate the
potential for transcription and aggregation errors.

4. IMPLEMENTATION
We built ODK Diagnostics as an Android application.

The decreasing cost of devices and open source nature of
Android, coupled with the growing adoption of the platform
in developing countries, made Android an attractive choice.
Although we designed ODK Diagnostics as a generalizable
tool to assist users with a variety of diagnostic tests, our
initial implementation focuses on a set of commercially
available and widely used RDTs for malaria and HIV, which
will allow us to deploy and evaluate the system with health
workers who currently use these RDTs in the field.

4.1 Digital Job Aids for RDTs
We chose to implement the digital job aids using HTML

and JavaScript rather than native Android code, since
we anticipate that it will be easier for users with limited
technical experience to work with HTML rather than modify
Android code. There are also a vast number of tools
available to assist users with the creation of HTML content.
We anticipate that the person who is responsible for creating
the digital job aids will not be the health workers who use
them in the field, but rather someone higher up in the
information hierarchy who has some technical experience.

Each job aid consists of a set of simple HTML pages
with a small amount of common JavaScript. To construct a
new job aid, users create or modify simple template HTML
and JavaScript files. We implemented the navigation and
user interface components using jQuery Mobile, and the job
aid is packaged as an Android application using PhoneGap
[1], which allows it to be installed locally and additionally
provides access to native functionality. We are also currently
in the process of developing a new version of our data
collection tool, ODK Collect, that will also use Javascript
and HTML, and we expect to soon be able to implement
the job aids directly with Collect and better integrate job
aids with data collection tasks.

Figure 4: Representative screenshots from the
digital job aid for the malaria RDT.

Thus far, we have created digital versions of several paper-
based job aids that are used by health workers to administer
malaria and HIV RDTs. Figure 2 shows part of the paper
based job aid for the malaria RDT. For the digital job aid,
each step in the process is shown individually on the phone’s
screen and numbered to provide some context of where the
user is in the process (e.g. Step 5 of 16). Figure 4 shows
some representative screenshots of the digital job aid for the
malaria RDT. Users navigate the system by pressing buttons
or swiping to go to the next or previous step.

When the user reaches the point in the RDT at which
she has to wait before reading the results, the application
automatically starts a timer, and alerts the user when the
correct amount of time has passed and the results are ready
for interpretation. To ensure that health workers can use
the digital job aids as a standalone tool, we have also
implemented the decision tree that guides users through the
process of manually interpreting the RDT results. Users
can then choose to read the results visually or automatically
using the algorithm described in the next subsection.

4.2 Optical Processing of RDTs
After the health worker has been guided through the

process of administering the RDT, the next task is to
obtain the test result. Our algorithm for automatically
interpreting the RDT results is implemented as a native
Android application, with the image processing components
making use of a Java implementation of OpenCV [21], an
open source computer vision library. All of the image
processing is performed on the phone without requiring an
Internet connection. This functionality will eventually be
integrated as a custom widget within ODK Collect (similar
to how we integrate reading barcodes or obtaining GPS
coordinates). There are five main processing steps required
to automatically read and interpret an RDT. We describe
each of these steps in detail in the sections below.

4.2.1 Create RDT Description and Reference Image
Our system design attempts to minimize the complexity

of adding new RDTs to the system. For each type of RDT
to be processed, the user must provide two files: (1) an
image of an unused RDT that will be used as a template for
aligning captured images and (2) a test description file that
will be used to locate and identify the regions of interest.
We utilize a generalizable JSON [4] format to specify the



Figure 5: Different regions of interest on an RDT:
control line, test lines and sample well.

location, size and type of each RDT region of interest, such
as the control lines, test lines and sample wells. Figure 5
shows an example RDT and the relevant regions of interest.
In addition, users must specify a region of the RDT strip
that is empty, in which no test lines or control lines are
located. Creating the test description file is a preliminary
step that only needs to be performed once for each type of
RDT. As with the creation of the job aids, we anticipate that
the health workers who use the application in the field will
not create the test description file. Instead, the description
file will be created by a supervisor or technician higher up in
the information hierarchy and distributed to health workers
in the field. Our plans for building a tool to allow users to
easily create new description files are outlined in Section 6.

4.2.2 Image Capture
Once the test description file and reference image have

been created and loaded on to the phone, the application is
ready to capture and process RDTs. The first step in the
processing pipeline is to use the phone’s camera to capture
an image of the RDT. To ensure accurate processing, images
should be well focused and taken while the camera is steady.
The captured image should contain all of the RDT content
while maintaining a minimal distance from the test. To
make it easy to take photos under optimal conditions, we
designed and 3D-printed a small stand that holds the phone
in position above the test. As shown in Figure 3, the phone
is placed on the stand and the RDT is placed beneath the
camera, thereby ensuring that both the camera and the RDT
are correctly positioned. While using the stand may not
be the most convenient method of capturing an image, it
increases the chances that the captured image will be of
sufficient quality to be accurately processed. Additionally,
making use of the stand may actually be advantageous,
since the user is not required to pick up the phone and can
instead focus on handling the RDT correctly and minimize
contamination of the phone. To capture an image, the user
places the RDT in position below the phone and presses a
button to launch the Android camera application. The user
can then take and retake photographs of the test. When
satisfied with the captured image, the user presses a button
on the phone to accept the image, which is saved and passed
to ODK Diagnostics for further processing.

4.2.3 Image Registration
After an image of the RDT has been captured, the next

step is to locate the portion of the image that contains
the test content. This involves locating and spatially
transforming the picture of the RDT to align with the
reference image that is stored on the phone. Alignment is

necessary to ensure that the entire RDT has been captured
and to determine the locations of each specific RDT element.
To perform the image registration, we first convert the
captured color image to grayscale, and then use a k-means
clustering algorithm [16] to separate the image into the
portion that contains the RDT and the portion that contains
the background. We then use contour-finding to isolate the
set of points that represents the RDT, and compute the
minimum-area bounding rotated rectangle that contains this
set of points. We rotate the rectangle that contains the RDT
to be horizontal, and crop the image to contain only this
rectangle. Finally, we compute a transformation that maps
the cropped RDT image to the reference image, thereby
establishing a point-by-point correspondence between the
two images. We then save an image of the aligned RDT
and display it on the screen so that users can check the
alignment prior to processing the test results.

4.2.4 Locate RDT Elements and Compute Results
Once the RDT has been successfully aligned, the next

step is to locate and process those parts of the RDT that
depict the test results. To do this, we normalize the color
intensities of the captured image and use a Gaussian blur
to remove noise. Then, the JSON description file for the
RDT is loaded and parsed, and the locations of each RDT
element extracted. The algorithm then looks for a field that
has been labeled as empty. This empty region corresponds
to a portion of the test in which no test lines or control lines
are located. We compute the average pixel intensity of this
empty region and use it to determine a threshold intensity
that will be used to determine whether a line is present in
the fields that are labeled as control and test regions.

After the threshold value has been calculated, each RDT
field that is labeled as being either a control line or a test line
is processed. To do this, we perform an image subtraction
to determine the difference in pixel intensities between the
empty image region and the test or control image region. If
the region of the image that we are testing does not contain
a line, the results of the image subtraction will be close to
zero, since the pixel intensities in the test region will be equal
to the pixel intensities in the empty region. However, if the
region that we are testing does contain a line, the results of
the image subtraction will differ from zero.

To determine if a line is present, we analyze the results
of the image subtraction for every column of pixels in the
region being tested. For each pixel in the column, we see
if the absolute value of the image subtraction for that pixel
is greater than the threshold value we calculated from the
empty region. To increase the chances that the algorithm
will successfully process faint test lines that represent low-
positive results, we set the threshold value to be small, but
require that the majority of pixels in the column exceed the
threshold before we determine the presence of a line.

Once we have determined whether the region being tested
contains a line, we use the label of the region to compute the
final outcome. If the region is labeled as a control region,
a line indicates the test is valid, and no line indicates the
test is invalid. If the test is invalid, no further results are
displayed. The application instead alerts the user that the
test is invalid and recommends that the user repeat the test
using a new RDT. If the test is valid, then for each region
labeled as a test region, the presence of a line indicates a
positive result, and no line indicates a negative result.



4.2.5 Save Output and Display Results
After all of the control and test regions of the RDT have

been processed, the outcome of the test needs to be saved
and displayed in a usable format. To do this, the application
constructs a JSON output file that contains the name and
type of each RDT region and the corresponding result of
processing for that region. In addition to the output file,
the application also saves the original captured image and
a marked-up image depicting the results of alignment and
processing. The application draws a colored box around
each region of interest that indicates the result: a green box
indicates that a line was detected, while a red box indicates
that no line was detected. These saved images can be used
to resolve any discrepancies that may arise after the RDT
is processed, and will ensure that a record of the test is
preserved and archived. The test results are also displayed
textually and visually on the phone’s screen.

4.3 Data Collection
After the RDT has been interpreted and the diagnosis

displayed to the health worker, the next step is to collect
and store data to keep a record of the test and its outcome.
As discussed in Section 3.3, it is important to collect timely
and accurate data regarding the numbers, types and results
of RDTs administered and make this data available to
decision makers quickly and in a usable format. Since there
are already a number of open-source data collection tools
available that have been designed and tested in developing
countries, we decided not to build our own data collection
software. Instead, we chose to integrate ODK Diagnostics
with the ODK toolkit, and allow users to export the results
of RDT processing to ODK Collect. Integrating ODK
Diagnostics with ODK Collect has a number of advantages.
First, users of ODK Diagnostics will be able to easily
combine the RDT data with other data that might be
relevant, including GPS coordinates of the test location
or additional patient specific data. Second, through ODK
Collect we allow users of ODK Diagnostics to gain access
to a number of other useful ODK tools, such as ODK
Aggregate and ODK Tables [15], which will facilitate the
analysis and visualization of the data collected. In addition
to the ODK tools, an increasing number of other platforms,
such as Formhub [11] and DHIS [8], have also chosen to
integrate their tools with ODK to provide additional services
for hosting and data analysis.

5. EVALUATION
The long term goal of this project is to create tools

that support health workers as they are required to
make increasingly complex diagnostic decisions about an
increasing number of diseases and medical conditions. The
work described in this paper represents our first steps
towards this goal, and as such we have not yet conducted
the extensive field work necessary to rigorously evaluate
the application with health workers at the point of care.
Instead, we focus on evaluating the technical performance
of our algorithm for automatically interpreting RDTs in the
laboratory. Our plans for field testing the system with health
workers in Peru are described in Section 6.

5.1 Apparatus
The experiments described in this section were conducted

by researchers at the Global Solutions for Infectious Diseases

Figure 6: We tested four different RDTs. From top
to bottom: SD Bioline malaria with a 1:32 dilution,
First Response malaria with a 1:32 dilution, SD HIV
1/2 3.0 RDT with a 1:5000 dilution and SD 1/2
Multi-device RDT with a 1:5000 dilution.

(GSID) [12] laboratory in San Francisco, USA. GSID is
a non-profit global health organization engaged in the
development of products to help prevent the spread of
infectious diseases, especially in the developing world. The
experiments were designed to test the robustness and
accuracy of the interpretation algorithm using four sets of
commercially available RDTs that were administered with
varying sample concentrations. We chose to test two malaria
RDTs, First Response Malaria and SD Bioline Malaria, and
two HIV RDTs, an SD 1/2 3.0 Multi-device HIV and an SD
1/2 3.0 HIV. Figure 6 shows the four RDTs tested. These
tests were selected for a variety of reasons. They are all
used extensively at the point of care and target diseases that
place a significant burden on many developing countries.
Additionally, we had access to enough tests to be able to
run a dilution series for each test using different sample
concentrations, and also possessed the necessary malaria
whole blood and HIV positive serum for administering the
tests in the laboratory. The experiments were performed
using an HTC Nexus One Android device that was placed
in the 3D-printed platform depicted in Figure 3. Since we
wanted to minimize the complexity of future user training,
we set all of the camera parameters to automatic.

5.2 Procedure
Before we could evaluate the performance of our algo-

rithm, we needed to create the appropriate diluted samples
and run each set of RDTs. For the malaria RDTs, the di-
lutions we used were: undiluted, 1:8 (strong positive), 1:32
(weak positive) and negative. These dilutions were selected
based on the researchers’ prior experience running RDT di-
lution series’, and knowledge of which concentrations would
produce strong positive and weak positive results. Each
First Response malaria RDT has one control line and one
test line for Plasmodium falciparum, while each SD Bio-
line malaria RDT has one control line and two test lines,
one for Plasmodium falciparum (Pf) and another for Falci-
parum/Pan (Pan). The malaria whole blood that we used
to run the tests contained both Pf and Pan, and so each



Table 1: Experimental results for each of the two malaria and two HIV RDTs tested
Indoor lighting Outdoor lighting

Control Lines Test Lines Control Lines Test Lines
Dilution Correct F-N F-P Correct F-N F-P Correct F-N F-P Correct F-N F-P

Undiluted 4 1 0 9 1 0 5 0 0 10 0 0
SD Bioline 1:8 5 0 0 10 0 0 5 0 0 10 0 0

Malaria 1:32 5 0 0 10 0 0 5 0 0 10 0 0
Negative 5 0 0 10 0 0 4 1 0 8 0 2
Undiluted 5 0 0 5 0 0 5 0 0 5 0 0

First Response 1:8 5 0 0 5 0 0 5 0 0 5 0 0
Malaria 1:32 5 0 0 5 0 0 5 0 0 5 0 0

Negative 5 0 0 4 0 1 5 0 0 5 0 0
1:50 5 0 0 10 0 0 5 0 0 10 0 0
1:250 5 0 0 10 0 0 5 0 0 10 0 0

SD 1/2 3.0 HIV 1:1250 5 0 0 10 0 0 5 0 0 10 0 0
1:5000 5 0 0 10 0 0 5 0 0 10 0 0

Negative 5 0 0 10 0 0 5 0 0 10 0 0
1:50 5 0 0 10 0 0 5 0 0 10 0 0

SD 1/2 1:250 5 0 0 10 0 0 5 0 0 10 0 0
Multi-device HIV 1:1250 5 0 0 10 0 0 5 0 0 10 0 0

1:5000 5 0 0 10 0 0 5 0 0 5 5 0
Negative 5 0 0 10 0 0 5 0 0 10 0 0

positive SD malaria test contains three lines (one control
and two test lines), while each positive First Response test
has two lines (one control and one test). Each negative First
Response or SD malaria test has one control line and no test
lines. We included a negative test series to ensure that the
algorithm could correctly determine the absence of a line.

For the HIV RDTs, the dilutions that we used were:
1:50 (very strong positive), 1:250 (strong positive), 1:1250
(weak positive), 1:5000 (very weak positive) and negative.
Each HIV RDT contains one control line and two test lines.
However, as shown in Figure 6, the HIV positive serum that
we used produces a positive result for only one of the test
lines, and so each positive test that we ran contained two
lines (one control line and one test line), while each negative
test contained one control line and no test line.

Lighting conditions in rural health centers are likely to
vary, so in addition to testing the algorithm on RDTs with
varying sample concentrations, we also ran tests in both
indoor and outdoor lighting conditions. For each RDT, five
test images were captured indoors, under the lighting in the
laboratory, and another five were captured outdoors in direct
sunlight. Our final set of test images for First Response
Malaria therefore consisted of 4 dilutions x 5 images of each
dilution x 2 lighting conditions x 2 lines per test: 80 lines,
while the SD Bioline Malaria tests consisted of 4 dilutions x
5 images of each dilution x 2 lighting conditions x 3 lines per
test: 120 lines. For each of the SD 1/2 multi-device HIV and
the SD 1/2 3.0 HIV, the experiment consisted of 5 dilutions
x 5 images of each dilution x 2 lighting conditions x 3 lines
per test: 150 lines each. This makes a total of 500 lines for
all of the experiments: 350 positive and 150 negative.

5.3 Analysis
To analyze the performance of the application, we ran

our algorithm on all of the test images. For each control
line or test line, we categorize a correct result as being a
true positive (T-P) if a line is correctly detected, or true
negative (T-N) if the absence of a line is correctly detected,
and we categorize an incorrect result as being a false positive
(F-P) if a nonexistent line is detected, or false negative (F-N)
if a line that should be detected is missed. It is interesting

to consider the relative importance of each error type. For
example, the consequences of a false negative test, which
may result in an infected patient not receiving treatment,
are more severe than a false positive test, which may result
in a healthy patient receiving unnecessary treatment.

5.4 Results
The experiment results are given in Table 1. Out of a total

of 140 valid control lines, 138 were correctly interpreted.
Two were incorrectly interpreted, and both of these errors
were false negatives. One error resulted from a highly
overexposed image, depicted in Figure 7. This suggests that
there is a need to create a way to automatically check the
quality of the image captured to ensure that images are
not overexposed, underexposed or blurry. However, it is
preferable that any errors that do occur are false negatives
rather than false positives, since a false negative would
simply result in the RDT being repeated for the patient,
rather than a potentially dangerous misdiagnosis.

Out of a total of 150 negative results, 147 were correctly
interpreted, and the three errors were all false positives:
one with a First Response malaria negative test and two
with an SD Bioline malaria negative test. Out of a total
of 210 positive test lines, 204 were correctly interpreted.
One of these errors occurred due to the same overexposed
image described previously and depicted in Figure 7. The
other five errors were false negatives that occurred with
the SD 1/2 multi-device HIV RDT at a dilution of 1:5000
under the outdoor lighting condition. As shown in Figure
8, we observed that placing the SD 1/2 multi-device RDT
in direct sunlight for a few minutes resulted in condensation
on the inside of the test cartridge, which made it difficult to
correctly process the low-positive lines. The condensation
also made it impossible to read the test result by eye, and
indicates that this particular RDT should not be used if the
test is to be performed outside or in a hot environment.

We also measured the time that it takes to process
each RDT. On average, it takes 2.42 seconds to align the
captured image, and 5.72 seconds to process the results,
giving a total of 8.14 seconds for the entire RDT. This time
could be reduced by using a native implementation (rather



Figure 7: Two marked-up SD Bioline undiluted
malaria RDTs: a properly interpreted RDT (top),
and an overexposed RDT (bottom) with a false
negative control line and one false negative test line.

than a Java implementation) of the image processing code.
However, since most RDTs require that the user wait 15 to
30 minutes before reading the test results, we feel that 8.14
seconds is sufficiently fast for our initial field tests.

6. DISCUSSION AND FUTURE WORK
This paper describes our first steps towards the goal

of creating an electronic point-of-care diagnostic system.
There are still numerous challenges that need to be
addressed to create a usable and appropriate tool for
administering and interpreting diagnostic tests effectively at
the point of care. However, our initial technical evaluation
of the system has raised a number of interesting issues.

First, although running dilution series’ may be a good
method for initially evaluating the system, the results
obtained from diluted samples might not be quite the same
as real weak positives. In addition, we do not yet know which
sample concentrations represent the limit of what can be
visually interpreted by humans, or how many errors health
workers make when manually interpreting the test results.
To evaluate the system more effectively, we plan to run a
trial in which we observe health workers administering RDTs
and visually reading the results. We will then use our system
to capture images of the same RDTs and automatically
process the results. We will then be able to rigorously
compare automated analysis with visual analysis.

Second, the sensitivity of RDTs that were manufactured
in different batches is known to vary slightly. In addition,
for some diseases, like malaria or syphilis, the consequences
of a false negative test result are severe, since an infected
patient may not receive the necessary treatment. In other
cases, a false positive test result might cause a patient to
be treated with unnecessary drugs that may have adverse
side-effects. These issues suggest that it will be necessary
to provide some mechanism for calibrating the sensitivity of
the system for each RDT to account for these variations.

Our current design makes use of a low-cost plastic stand to
position the phone correctly above the RDT. We anticipate
that it will be advantageous for users to not have to pick up
and handle the phone, since this will leave their hands free to
focus on handling the RDTs and biological samples correctly.
However, as with many medical procedures, health workers
wear latex gloves when administering RDTs, and although
the capitative touchscreen of the device still works with latex
gloves, the gloves may hamper the usability of the interface

Figure 8: Two marked-up SD 1/2 multi-device HIV
RDTs with 1:5000 dilution: a properly interpreted
RDT (top), and an RDT with a false negative test
line due to condensation on the inside of the RDT
cartridge (bottom).

if they are not tight fitting. Additionally, if a health worker
is handling infectious material, such as HIV positive blood,
it is likely to be undesirable for her to touch the device at
all, since she may accidentally transfer some of the infectious
material on to the device, and it will then be dangerous for
anyone who is not latex gloves to touch the device. This is an
issue that is likely to be relevant for many different mHealth
applications, since health workers typically wear gloves when
they interact with patients, but may not always wear gloves
when they handle the device. One solution is to create a
hands-free method of interacting with the system, possibly
using voice or gesture recognition, and we believe that this
topic holds rich potential for future research.

There are a number of additional features that would
enhance the utility of ODK Diagnostics. We anticipate
that creating the RDT description file is likely to be the
most technically challenging task for organizations using the
system, and so we will create an application that guides
users through the process of creating new test descriptions.
In addition, we will create a method for checking the quality
of the image captured, so that the system can warn users if
it detects that an image is overexposed or out of focus. We
also believe that the technology will be particularly useful
for automatically interpreting RDTs whose results require
quantification or time-sensitive analysis (which are difficult
to do by eye), rather than simple binary decisions. Creating
algorithms for handling these more complex RDTs will be
one of our priorities in the coming months.

We have chosen to integrate ODK Diagnostics with the
rest of the ODK toolkit so that it is easy for users to collect
and analyze data regarding the number, type and results
of RDTs administered. However, it will also be important
to integrate the data with an individual patient’s medical
record so that patient specific data can be recorded and
tracked over time. There are a number of medical record
systems for Android that are currently in use in developing
countries, and it would be advantageous to integrate ODK
Diagnostics with one or more of these systems.

ODK Diagnostics provides digital job aids to assist health
workers administering RDTs. However, in some cases it
may also be appropriate to supply health workers with
recommendations for treatment if the test result is positive.
Alternatively, the system could suggest additional tests or
procedures to try if the test result is negative. For example,
if a child has a fever, but the malaria RDT is negative, the
system could provide suggestions for other tests that might
help to diagnose the patient. Implementing the job aids with
the Javascript/HTML functionality of ODK Collect 2.0 will



greatly improve the flexibility of the tools as ODK Collect
2.0 already supports most of these additional features.

Finally, we have not yet rigorously evaluated the usability
of the system with front-line health workers in developing
countries. We have plans to test ODK Diagnostics in Peru in
the coming months and we will use this opportunity to run a
study that evaluates the entire system, including comparing
the efficacy of the new digital job aids to the paper-based
job aids. We look forward to working with health workers to
ensure that the system is usable and appropriate given the
constraints experienced by these low-resource communities.

7. CONCLUSION
Disease detection and epidemiology are limited by the

scarcity of accurate, convenient and affordable diagnostic
tests in the developing world. The use of low-cost rapid
diagnostic tests has the potential to facilitate the diagnosis
and treatment of many infectious diseases and medical
conditions at the point of care within a single patient visit
to a clinic. However, in order for these new diagnostic
technologies to be effective, tools must be developed to
support the health workers who will be responsible for
administering the tests and interpreting their results. To
address this challenge we built ODK Diagnostics, an end-
to-end solution for administering and analyzing a variety
of existing RDTs. This paper describes the technical
implementation and initial evaluation of ODK Diagnostics,
which represent only the first steps towards building a
effective point-of-care diagnostic system. Our results
suggest that the system is ready to be field tested with health
workers, and our next steps will involve more focused field
studies that rigorously evaluate both the digital job aids and
the algorithm for automatically interpreting the test results
to ensure that they are usable and appropriate for point-of-
care settings in developing countries.
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