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ABSTRACT
Artificial intelligence (AI) and machine learning (ML) are quickly
becoming pervasive in ways that impact the lives of all humans
across the globe. In an effort to make otherwise "black box" AI/ML
systems more understandable, the field of Explainable AI (XAI) has
arisen with the goal of developing algorithms, toolkits, frameworks,
and other techniques that enable people to comprehend, trust, and
manage AI systems. However, although XAI is a rapidly growing
area of research, most of the work has focused on contexts in the
Global North, and little is known about if or how XAI techniques
have been designed, deployed, or tested with communities in the
Global South. This gap is concerning, especially in light of rapidly
growing enthusiasm from governments, companies, and academics
to use AI/ML to “solve” problems in the Global South. Our paper
contributes the first systematic review of XAI research in the Global
South, providing an early look at emerging work in the space. We
identified 16 papers from 15 different venues that targeted a wide
range of application domains. All of the papers were published in
the last three years. Of the 16 papers, 13 focused on applying a
technical XAI method, all of which involved the use of (at least
some) data that was local to the context. However, only three pa-
pers engaged with or involved humans in the work, and only one
attempted to deploy their XAI system with target users. We close
by reflecting on the current state of XAI research in the Global
South, discussing data and model considerations for building and
deploying XAI systems in these regions, and highlighting the need
for human-centered approaches to XAI in the Global South.
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1 INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) are quickly
becoming pervasive in many aspects of our lives. These techniques
are now impacting the ways humans are hired [76, 150], receive
credit scores [78], shop for products [4, 116], and receive social
assistance [5, 77, 106]. Despite the ability of AI to work for the
greater good, research has shown the negative impacts of employing
such technologies. For example, studies have revealed gender bias in
facial recognition systems [22], racial bias in recidivism prediction
[65, 94], and ethical issues in automated hiring [76, 150], credit
scoring [78], and surveillance [60, 152].

In recognition of the growing influence of AI/ML in people’s
lives and the problems around many AI/ML systems being "black
boxes", a growing body of work is focusing on "Explainable AI"
[29, 80, 86, 128, 129]. We consider "Explainable AI" to be the set of
machine learning techniques (algorithms, toolkits, frameworks, etc.)
that equip humans involved in the design, development, integration,
and use of AI-enabled systems with the ability to comprehend, trust,
and manage them [10]. However, existing work in XAI is primarily
focused on contexts/communities in the West/Global North. But,
AI/ML is increasingly also pervading contexts in the Global South
with goals to improve healthcare [16, 96, 124], aid in social policy
decision-making [54, 81, 102], improve educational access [21, 91],
and address environmental concerns [68, 74, 141, 143], with poten-
tially life-changing consequences for individuals and communities
[15]. Thus, there is an urgent need to also closely examine the
current state of XAI in the Global South, how AI/ML systems are
being made to be understandable by people who must use these
systems, and identify opportunities to make AI/ML systems more
explainable for users in these contexts.

While several scholars have analyzed emerging trends in re-
search related to XAI [2, 10, 47, 52, 101], these respective works
do not specifically focus on the Global South, our target region. In
this paper, we contribute a systematic review of XAI research in
the Global South both for researchers working in the field of XAI
and the larger ICTD community. Our search for literature yielded
16 papers focused on XAI in the Global South. We then analyzed
these 16 papers to understand factors that shape the design and
deployment of XAI systems for these regions. Although we did
not limit the date range in our search, all 16 papers in our review
were published within the last three years (2019-2021), highlighting
the nascent and emerging nature of this field. The 16 papers were
published at 15 different venues including COMPASS, CHI, and
workshops at premier ML conferences like the Conference on Neu-
ral Information Processing Systems (NeurIPS), the International
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Conference on Learning Representations (ICLR) and the ACM Con-
ference on Knowledge Discovery and Data Mining (KDD). We show
how, to date, XAI research in the Global South centers mainly on
India, with little work focusing on Africa or Latin America. In the
papers we reviewed, there was a strong focus on applying XAI to
socially-relevant domains, with healthcare being the most popular
domain. The papers also studied a diverse range of communities,
from sex workers to secondary school educators to fashion retailers.
Of the 16 papers, 13 focused on technical implementations of XAI,
all of which used at least some data that was local to the context
they worked in. However, only three of the 16 papers engaged with
intended target communities, and only one actually deployed their
XAI system with real users.

Taken together, our findings reveal both encouraging trends and
concerning gaps emerging in XAI research in the Global South. We
close by discussing important data and model considerations that
AI and ICTD researchers need to take into account as they work to
design and build fair, ethical XAI tools for contexts and communi-
ties in the Global South. Finally, we call for more human-centered
approaches to XAI research to ensure that the field addresses grow-
ing inequities and makes AI explainable to people from diverse,
global contexts.

2 BACKGROUND AND RELATEDWORK
2.1 AI/ML in the Global South
Although our review focuses specifically on XAI, we situate our
work within the broader context of prior and ongoing AI/ML re-
search in the Global South. A growing body of work has began
to emerge exploring the potential of AI and its respective bene-
fits and implications in the Global South. For example, work from
Dufresne-Camaro et al. [34] focuses specifically on computer vision,
surveying the field to identify risks and recommendations for prac-
titioners building computer vision systems for this region. Other
work has examined AI initiatives on national, regional, and conti-
nental levels within the African context, providing an overview of
the the benefits and challenges resulting from AI use in this region
[53].

Although the concept of "responsible AI" has primarily been
discussed in relation to contexts in the Global North [10, 28, 118],
research has begun to explore how these concepts translate to
developing regions. For example, to understand how concepts of
algorithmic fairness differ from Western contexts, Sambasivan et
al. [126] analyzed challenges surrounding ML deployments in India.
From this analysis, the authors present a roadmap for improving
fairness in India with actionable steps, such as considering infras-
tructure limitations, problem choices, dataset building, and model
training.

Scholars have also focused on providing recommendations geared
towards governments to help inform how AI can be leveraged to-
wards sustainable development goals (SDGs) [123, 145, 147]. For
example, Isagah and Musabila [61] interviewed ML practitioners
across the African continent to understand their experiences de-
veloping AI/ML systems, implementation challenges associated
with system deployments, and provide policy recommendations
to African governments. As AI continues to be actualized within

the Global South, it will take collaborative efforts to ensure the fair
development and use of these systems.

Our paper expands prior research on AI/ML in the Global South
by focusing specifically on XAI, a new subarea of the field that has
to date been underexplored in low-resource contexts. Our analysis
aims to highlight ways in which XAI might contribute to the devel-
opment of ethical, understandable, and equitable AI/ML systems in
the Global South.

2.2 Explainable AI
Recent years have seen a rapid increase in research addressing the
sociotechnical issues brought about by the use of AI systems in the
Global North. In particular, the field of XAI has arisen, with the
goal of ensuring that the decisions and recommendations made by
AI systems are understandable to people who interact with such
systems [10]. Explainability can focus on both the model design and
output in regards to how humans understand decisions made by
AI systems. Incorporating explainability into model design and de-
velopment allows developers to understand how model parameters
are making decisions and how these decisions are tracked [117].
When explaining ML models, the foremost way to do so is through
techniques such as feature importance [119, 120] and model distilla-
tion [79, 85, 140], methods that are not accessible to those who lack
such specialized knowledge. In the development of XAI systems,
techniques such as looking at the prediction accuracy, limiting the
scope of decision-making, and educating teams working with AI
on these systems can help improve how developers understand the
decisions made by their respective models [58]. Explainability has
become a prominent issue, especially for corporate adopters of AI
who need to ensure that decisions made by their AI systems can
both be explained and understood [113]. We now discuss prevalent
XAI techniques, vocabulary, and concepts, with the goal of provid-
ing a strong basis for understanding the terms used in our search
and filtering methodologies, and the techniques used within the
our resulting corpus.

XAI Techniques. Popular techniques for XAI include SHAP, a
method that explains individual predictions by measuring how
model features contribute to them [88], and LIME which trains
surrogate models to help explain how the original model arrived at
a particular decision [119]. SHAP and LIME methods are relatively
generalizable and have been applied to a wide range of machine
learning subfields like computer vision and natural language pro-
cessing (NLP). In computer vision, these techniques have been
leveraged to develop visual explanation maps [67, 82] and saliency
approaches [97] that highlight regions of interest in images. An-
chor, a method that explains individual predictions of classification
models, works for text or tabular data [120]. Other methods from
philosophical domains include contrastive explanations [33, 64]
which aim to describe event occurrences in contrast to another and
counterfactuals [24, 51, 70] which describe events in causal form.

Over the years, companies such as Microsoft [92], IBM [12],
Google [49, 50], and Amazon [8] have developed commercial toolk-
its for use in developing ML systems with their respective cloud
platforms. Many of these toolkits incorporate popular XAI algo-
rithms such as LIME and SHAP or create improved versions of
these algorithms [43] while providing features such as tutorials
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and visualizations to ease their integration by developers. Soft-
ware libraries have also become popular tools for developers to
rely on to improve the explainability of models. Tools such as Alibi
[75], Skater [32], InterpretML [105], EthicalML-XAI [42], DALEX
[20], and iNNvestigate [6] provide explainability in a variety of
ways, ranging from model inspection to prediction explanation.
Many of these techniques and tools focus on software developers,
rather than end users, and require a relatively high level of AI/ML
knowledge to implement.

Human-Centered Studies in XAI. While much of the research
presented in XAI has focused on technical and algorithmic tech-
niques, human-centered studies have begun to emerge that aim to
understand how humans perceive, value, and understand AI sys-
tems. Ehsan et al. [35] introduced the concept of "human-centered
explainable AI (HCXAI)" with the aim of centering humans in the
design of AI systems while understanding the unique factors that
shape each respective user. Work from Katell et al. [69] focused
on the use of participatory and co-design methods to ensure al-
gorithmic accountability in ML interventions deployed in local
communities. Liao et al. [83] interviewed user experience (UX) and
design practitioners with the aim of identifying gaps in existing
XAI research and opportunities to create XAI tools that make AI
understandable for users in real-world settings.

To help non-technical users understand AI systems, researchers
have explored techniques such as interactive demonstrations [48,
136], visualizations [99, 138, 139], and storytelling [37]. For exam-
ple, Hsu et al. [55] build on prior work centering humans in XAI
research by leveraging participatory design practices to encourage
co-design of AI systems between scientists and local communities.
Cheng et al. [27] conducted online experiments with non-AI ex-
perts and find that explanations improve user understanding of
algorithms but come with time tradeoff. Additionally, frameworks
that guide the design, development, and use of XAI techniques have
also become more common [40, 149, 155]. For example, work by
Alikhademi et al. [7] aims to evaluate explainable AI tools in terms
of how well they explain results to the users of AI systems.

Taken together, the growing literature on human-centered XAI
suggests an exciting focus on work that makes AI understandable
to non-technical users. However, all of this work has been done in
the Global North. As a result, very little is known about the state
of XAI that focuses on contexts in the Global South. This gap is
concerning, given the growing enthusiasm for deploying AI/ML
systems in communities in the Global South [11, 30]. Our paper thus
provides a first look at early research emerging in this important
area.

3 METHODS
We conducted a systematic literature review to identify XAI re-
search focused on contexts in the Global South. We now outline the
methodology for our review, including the venues, search terms,
and filtering strategies used. We then discuss how we analyzed and
categorized the 16 resulting papers.

Search Methodology. To identify literature for inclusion, we in-
corporated methods similar to researchers conducting other sys-
tematic reviews [31, 63, 144]. Over a period of three months from

August 2021 to October 2021, we surveyed literature to identify
papers that discuss XAI techniques applied in the development, de-
ployment, and evaluation of AI-enabled technologies in the Global
South. We searched the ACM Digital Library, arXiv, and Google
Scholar, utilizing their built-in search functions. Our search was
not restricted to any specific time frame and not limited to specific
venues or proceedings. Our searches yielded papers across a range
of venues within AI and HCI including conferences (e.g., CHI and
COMPASS) and workshops (e.g., Machine Learning for Develop-
ment Workshop at NeurIPS, AI for Social Good Workshop at ICLR,
and Responsible AI Workshop at KDD).

Our search combined two sets of search terms (see Table 1):
(1) terms in the category of XAI, including phrases such as ‘AI
explainability’, ‘model explainability’, and ‘explainable AI’, and (2)
terms in the category of the Global South, including phrases such
as ‘developing countries’, ‘developing regions’, and ‘developing
world’. To create a combined term, we took one phrase from the
XAI category and another from the Global South, and used the
boolean operator ‘AND’ to ensure that resulting papers included
both phrases. The combination of search terms from both categories
resulted in 192 search terms.

Searches from the ACM Digital Library were configured to filter
out demonstrations, extended abstracts, posters, talks, and tutorials.
However, arXiv and Google Scholar did not have similar filtering
functions, so we manually filtered the search results to maintain
this criteria. Our initial searches from the terms listed in Table 1
yielded 208 papers.

We then conducted multiple passes over the search results. Due
to the similarity of many of our search terms, we prioritized remov-
ing duplicates in our first pass. We also removed papers where the
search terms appeared only in the references section of the paper or
the paper was a review or survey of XAI techniques (survey papers
were removed since they talked generally about XAI and did not
focus specifically on work that was conducted in the Global South).

After these passes, we were left with 115 papers in our shortlist.
Next, we manually filtered these 115 papers to identify those that:
(1) discussed the benefits or implications of XAI, or (2) described
the design, development, evaluation or implementation of an AI
system or machine learning model that incorporates XAI methods.
We reviewed each paper by carefully reading the title, abstract,
and introduction, and skimming the other sections. We used this
methodology to remove papers that, upon closer inspection, did
not focus on either XAI or its applications to the Global South. An
example of a paper that we filtered out was “Brilliant AI Doctor” in
Rural Clinics: Challenges in AI-Powered Clinical Decision Support Sys-
tem Deployment by Wang et al. [148]. While the keywords initially
seemed relevant to our search, upon closer inspection, we found
that the paper focused on challenges regarding the deployment of
a clinical support tool while only mentioning in one sentence the
possibilities of integrating XAI in future iterations of the tool. At
the end of this phase, we were left with a final set of 16 papers from
15 venues (see Table 2).

Analysis. After finalizing our dataset of 16 papers, we analyzed
the content of each paper.We began familiarizing ourselves with the
papers by carefully reading through them. We developed a rubric
based on key information extracted from each paper (discussed
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Table 1: Strategy used to compose search terms

Category Keywords
(A) Explainable AI AI explainability, model explainability, explainable AI, explainable artificial intelligence, explainable

ML, explainable machine learning, algorithmic explicability, algorithmic explainability
(B) Global South Africa, community health workers, developing countries, developing regions, developing world, eco-

nomic development, farmers, global development, global south, India, international development, Kenya,
Latin America, LMIC, low-income, low-literate, low-resource, marginalized, novice technology users,
rural, social good, South Africa, Southeast Asia, underserved

Search Term (A) AND (B)

below) and entered this information into a document management
system. Multiple passes were done by the team to ensure that
our categorizations were accurate. Additionally, we held regular
meetings to discuss discrepancies and reach consensus on the final
categorizations.

For each paper, we extracted its geographic focus (e.g., Africa,
Latin America, India, China), domain (e.g., healthcare, education,
government), population involved (e.g., indigenous populations,
community health workers, refugees), the methods used (e.g. algo-
rithm development, dataset building, interviews), and whether the
technology, prototype, or interviews described in the paper were
implemented or conducted with local populations. We use the term
"implemented" to describe an XAI tool or system that is brought
into use in local communities. An example of a paper that does not
implement an XAI system is "Learning Explainable Interventions
to Mitigate HIV Transmission in Sex Workers Across Five States
in India" by Awasthi et al. [13]. In this paper, the authors describe
their work building a Bayesian network combined with an XAI
model to encourage safe sex practices with sex workers in India.
At the time of publication, the paper was not tested in a real-world
setting but the authors state that the model is “currently ongoing
field trials for assessing the real-world utility of this approach.”

For papers that surveyed participants or included data from
more than one country, we either categorized this as “Global South"
broadly or, if localized to a continent, we used the respective name
of the continent (e.g., “Africa”). To define domain, we described it
as the primary field in which the paper describes or addresses a
problem. An initial list of domains was obtained from prior meta-
analysis papers focusing on human-computer interaction for devel-
opment (HCI4D) [31]. However, we expanded this list upon closer
analysis of the papers in our dataset, adding domain areas such as
“Government/Policy”, “Finance”, “ML/Algorithmic Development”,
“Informational/Awareness”, and “Misinformation” to existing topic
areas, such as “Healthcare”, “Education”, and “Agriculture”. Next,
we categorized the papers around the types of XAI techniques
used, engagement with end users, and whether the XAI systems
were deployed. Finally, we analyzed the papers to distill trends in
XAI research in the Global South and the implications, benefits, or
challenges encountered in the research.

Positionality. All authors are from countries in the Global South,
currently residing in the US. All have extensive experience conduct-
ing fieldworkwith underserved communities in different continents.
We believe in the importance of centering humans in AI and XAI
research. We view research from an emancipatory action research
mindset [14, 73], aiming to highlight the opportunities, challenges,

and tensions of incorporating XAI techniques into the design of
systems for communities in the Global South.

Limitations. The goal of our paper is to broadly survey the state
of XAI in the Global South. We acknowledge that our searches were
limited to papers written in English and indexed by the scholarly
platforms used in our literature review. We realize that scholarly
work is not limited to prestigious journals and conferences and
made an effort to also searching archival preprint platforms like
arXiv and include workshop papers. Despite these limitations, our
analysis provides useful insights to inform future work shaping
XAI advances in the Global South.

4 FINDINGS
The 16 papers in our dataset (listed in Table 2) cover a broad range
of domain areas, publication venues, and regions, and engage with
a diverse range of populations. We start by discussing when and
where the papers were published, followed by the countries and
geographic regions involved in thework.We then turn our attention
to the domains the papers focus on, the populations studied, and
whether the data used in each paper was local to the context. Next,
we discuss whether or not the research involved target users and the
specific XAI methods employed. Finally, we look at the challenges
that arose when putting XAI tools into practice.

When and where were the papers published? Although our
search did not specify a date range, all 16 papers in our dataset
were published within the last three years: one in 2019, nine in 2020,
and six in 2021. This finding suggests that research on XAI in the
Global South is very new. We further note that the total number
of papers in our review is very small (16) compared to the overall
amount of XAI research published over the same timeframe of three
years (approx. 18,000 papers according to Google Scholar). These
findings highlight the timeliness of our review, which provides a
first look at research emerging in the space, laying a foundation for
understanding the state of XAI in the Global South.

The 16 papers were published in 15 different venues, including
journals (6), workshops (5), and conferences (4), with one paper pub-
lished as a preprint on arXiv. The large number of different venues
suggests that research in this space has not yet found an academic
‘home’ venue (e.g., only one paper was published at COMPASS and
another one at CHI). Given the diverse range of potential users
and communities that have been targeted by the papers within our
corpus, the formation of a venue that can cater to the needs of
researchers focusing on XAI in the Global South may be necessary.
In addition, the relatively large proportion of workshop papers
may be helped by several recent workshops specifically focused on
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Table 2: Final set of 16 papers obtained from our filtering strategy

Title Authors Venue Year
Workingwomen and caste in India: A study of
social disadvantage using feature attribution

Kuhu Joshi and Chaitanya K. Joshi AI for Social Good Workshop at the Interna-
tional Conference on Learning Representa-
tions (ICLR)

2019

Automating the Surveillance of Mosquito Vec-
tors from Trapped Specimens Using Com-
puter Vision Techniques

Mona Minakshi, Pratool Bharti, Willie B. Mc-
Clinton, Jamshidbek Mirzakhalov, Ryan M.
Carney, and Sriram Chellappan.

ACM SIGCAS Conference on Computing and
Sustainable Societies (COMPASS)

2020

Detecting and Explaining Depression in So-
cial Media Text with Machine Learning

Rida Zainab and Rajarathnam Chandramouli Designing AI in Support of Good Men-
tal Health Workshop, ACM Conference on
Knowledge Discovery & Data Mining (KDD)

2020

Explainability and Fairness in Machine Learn-
ing: Improve Fair End-to-end Lending for
Kiva

Alexander Stevens, Peter Deruyck, Ziboud
Van Veldhoven, and Jan Vanthienen.

IEEE Symposium Series on Computational
Intelligence (SSCI)

2020

Improving healthcare access management by
predicting patient no-show behaviour

David Barrera Ferro, Sally Brailsford, Cristián
Bravo, and Honora Smith

Decision Support Systems 2020

Interpretable Poverty Mapping using Social
Media Data, Satellite Images, and Geospatial
Information

Chiara Ledesma, Oshean Lee Garonita,
Lorenzo Jaime Flores, Isabelle Tingzon, and
Danielle Dalisay

Machine Learning for Development Work-
shop (ML4D) at the Conference on Neural
Information Processing Systems NeurIPS

2020

Learning Explainable Interventions to Miti-
gate HIV Transmission in SexWorkers Across
Five States in India

Raghav Awasthi, Prachi Patel, Vineet Joshi,
Shama Karkal, and Tavpritesh Sethi

Machine Learning for Development Work-
shop (ML4D) at the Conference on Neural
Information Processing Systems NeurIPS

2020

Socio-ethical implications of using AI in accel-
erating SDG3 in Least Developed Countries

Kutoma Wakunuma, Tilimbe Jiya, and
Suleiman Aliyu

Journal of Responsible Technology 2020

Towards neonatal mortality risk classifica-
tion: A data-driven approach using neonatal,
maternal, and social factors

Carlos Eduardo Beluzo, Everton Silva, Lu-
ciana Correia Alves, Rodrigo Campos Bresan,
Natália Martins Arruda, Ricardo Sovat, and
Tiago Carvalho

Informatics in Medicine Unlocked 2020

The use of machine learning “black boxes”
explanation systems to improve the quality
of school education

Ravil Muhamedyev, Kirill Yakunin, Yan A.
Kuchin, Adilkhan Symagulov, Timur Buldy-
bayev, Sanzhar Murzakhmetov, and Alibek
Abdurazakov

Cogent Engineering 2020

Applying a principle of explicability to AI
research in Africa: should we do it?

Mary Carman and Benjamin Rosman Ethics and Information Technology 2021

An Empirical Study of Accuracy, Fairness, Ex-
plainability, Distributional Robustness, and
Adversarial Robustness

Moninder Singh, Gevorg Ghalachyan, Kush
R. Varshney, and Reginald E. Bryant

Responsible AI Workshop at ACM Confer-
ence on Knowledge Discovery and Data Min-
ing (KDD)

2021

Explainable AI based Interventions for Pre-
season Decision Making in Fashion Retail

Shravan Sajja, Nupur Aggarwal, Sumanta
Mukherjee, Kushagra Manglik, Satyam
Dwivedi, and Vikas Raykar

ACM IKDDCODS, COMAD (CODS COMAD) 2021

Introspecting predictability of market fear in
Indian context during COVID-19 pandemic:
An integrated approach of applied predictive
modelling and explainable AI

Indranil Ghosh and Manas K. Sanyal International Journal of Information Manage-
ment Data Insights

2021

“It cannot do all of my work”: Community
HealthWorker Perceptions of AI-EnabledMo-
bile Health Applications in Rural India

Chinasa T. Okolo, Srujana Kamath, Nicola
Dell, and Aditya Vashistha

ACM Conference on Human Factors in Com-
puting Systems (CHI)

2021

Tracking Peaceful Tractors on Social Media–
XAI-enabled analysis of Red Fort Riots

Ajay Agarwal arXiv 2021

related topics, such as the Machine Learning for the Development
workshop at NeurIPS. We hope that such workshops might eventu-
ally serve as a gateway for a larger number of full papers accepted
at the corresponding conferences, although our dataset does not
yet show evidence of this.

What countries and geographic regions are represented? Next,
we analyzed the locations where the research took place. Prior re-
views of ICTD research has shown a skew towards work being
conducted in India [31, 111, 144]. Despite prior work calling for
more geographic diversity [31], we found similar trends in our
analysis (see Table 3). Six papers focused on XAI in India, followed
by five focused on the broader Global South (meaning that the
research covered multiple countries in this region). From there,

papers focused on African continent (1) and countries like Brazil
(1), Colombia (1), the Philippines (1), and Kazakhstan (1). The rel-
atively large proportion of papers focused on India is likely due
to the presence of a large number of academic institutions as well
as industry research labs like that of Microsoft, IBM, and Google.
We also find it important to note the small amount of work that
focused on Africa, the Caribbean, and Central and South America.
In regions where English is not the primary language for academic
research, it is possible that scholarly work appeared in local lan-
guages (e.g., Spanish) and this could be the reason for the lack of
work we found focusing on Central and South America. However,
the small number of papers focusing on Africa is perhaps surprising,
given the existence of organizations such as Deep Learning Indaba
(established in 2017) [59], Data Science Nigeria (established in 2016)
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Country/Region No.

India 6
Global South 5
Africa 1
Brazil 1
Colombia 1
Philippines 1
Kazakhstan 1

Total 16

Focus Area No.

Healthcare 6
Government & Policy 3
Finance 2
General Awareness 1
Education 1
Misinformation 1
Retail 1
Algorithm Development 1

Total 16

Publication Type No.

Journal 6
Workshop 5
Conference 4
Pre-print 1

Total 16

Table 3: Summary of the 16 papers in our review by geo-
graphic region/country, focus area, and publication type.

[103], and Masakhane NLP (established in 2019) [109], all of which
aim to increase AI research and practice in Africa.

After understandingwhat countries and geographic regionswere
represented in our dataset, we were interested in examining where
the authors were based versus where their respective research took
place. Our analysis showed that authors came from institutions
based in India, Brazil, South Africa, Kenya, the Philippines, Kaza-
khstan, Colombia, Armenia, Belgium, the United States, and the
United Kingdom. Encouragingly, most papers were produced by
institutions in the Global South. When mapping the country the
work focused on versus the authors’ institutions, it was rare if at
least some of the authors were not based in the country. For exam-
ple, five out of six papers that focused on India were published by
authors based in institutions in India. In many cases, the research
team comprised of members located both in the Global South and
the Global North. The paper by Okolo et al. [108] is an example
of such work where research team consisted of members based in
India as well as the United States. Other examples of such hetero-
geneity include work by Ferro et al. [41], where researchers had
multiple affiliations with institutions in the Global North and South
(e.g. Colombia and the United Kingdom).

What are the domain areas that papers focus on? Next, we
analyzed the domain areas that motivate researchers to explore the
feasibility of XAI methods and techniques. We found that papers
targeted a range of domains (see Table 3), including algorithmic
development, healthcare, government & policy, education, misin-
formation, retail, and finance.

A substantial number of papers (6) focused on healthcare. For
example, Beluzo et al. [17] focused on predicting neonatal mortal-
ity, while Ferro et al. [41] worked on estimating patient no-show
behaviors. Awasthi et al. [13] used survey data collected from over
10,000 female sex workers in India to develop an ML model to
understand the factors that influence their safe sex practices. In
doing so, they described how developing “a transparent and explain-
able approach with expert evaluation is critical to model sensitive
issues” and implied that their work could be put into practice for

similar interventions more generally. Several of these papers cite
the lack of quality healthcare services in low-resource areas as a
primary motivator for applying AI and XAI to problems in health-
care [13, 17, 93]. In line with this general motivation, prior work
in the Global North that has focused on AI more broadly (as op-
posed to our focus on XAI in particular), has also pushed to develop
AI-enabled tools for use within healthcare, such as improving the
delivery of primary care services while preserving the autonomy
of healthcare practitioners and maintaining the value of human
presence [44, 71, 115].

Addressing socioeconomic concerns to aid in policy and govern-
ment decision-making was also a strong focus for three papers in
our dataset. For example, work by Joshi and Joshi [66] examined the
caste-group structure in India to understand changes in the ability
to predict the work status of women across those castes. By apply-
ing an XAI technique (SHAP) to their model, the authors found
that over time, caste affiliation is less likely to determine working
status (not/having a job) in younger generations of women and that
these women are more likely to experience upward mobility in their
careers. This work shows promise in improving how social stigma
is measured in a longitudinal manner and could shape programs
geared towards improving economic access for lower status castes
in India.

In another paper that focused on making policy recommenda-
tions for reducing poverty, Ledesema et al. [81] use government sur-
vey data, social media data, and geospatial features to map poverty
in the Philippines. Their approach overcomes challenges associated
with traditional poverty mapping by using lower-cost data instead
of high-resolution satellite images. By leveraging XAI algorithms to
help quantify the impact of dataset features on predictions, the team
presents a feasible approach that could find applications in other
research domains within the Global South. In situations where pol-
icymakers and government officials may not possess the capacity
necessary to understand the decisions made by algorithmic systems,
incorporating XAI methods in the development of such systems
could improve how AI is used to address social issues.

Who are the studied populations? Research in the fields of
HCI4D and ICTD strongly emphasize paying attention to local
contexts when designing interventions for communities. Drawing
on these lessons, we aimed to analyze what communities or popu-
lations researchers identified as the intended beneficiaries of their
work and/or who contributed to their research (e.g., by providing
data).

To develop or analyze XAI tools for applications in the healthcare
domain, scholars focused on women sex workers [13], community
healthcare workers in rural India [108], local communities seek-
ing healthcare services in Colombia [41], taxonomists [93], social
media users who speak Urdu [154], and mothers and newborns
in Brazil [17]. In education, one paper focused on students and
educators in secondary school settings [98]. For misinformation,
one paper focused on tweets on sociopolitical events in India [3].
Within papers that focused on government and policy issues, pop-
ulations included were women in India from a range of castes [66],
households in the Philippines [81], borrowers on a loan request
platform [137], households from four East African countries [135],
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and product developers and designers in the retail fashion industry
in India [125].

Several papers did not mention a specific population in their
analysis, focusing instead on analyzing XAI for a general population
in the Global South [26, 46, 147]. An example of this is work by
Ghosh and Sanyal [46] that uses financial market data from India
to create a model predicting market volatility during the COVID-19
pandemic. Overall, we found the diverse populations targeted by
the papers in our dataset encouraging, suggesting a diversity of
potential applications of XAI across many different settings in the
Global South.

Is the data used local to the context? A growing body of AI/ML
research has called for ethical collection and use of data used to train
models for intelligent systems [22, 57, 112, 127, 131]. Situating this
within the context of HCI4D and ICTD research, work in XAI in the
Global South should prioritize using data local to and representative
of the populations that will be affected by such systems. When
framing the relevance of the problems addressed within the papers
we analyzed, we were interested in whether the data used was
local to the context addressed. Encouragingly, we found that, of
the 13 papers that focused on technical implementations of XAI, all
used data from regions in the Global South. For example, Singh et
al. [135] conducted an empirical study to analyze different metrics
across the fairness, accountability, transparency, and ethics (FATE)
spectrum, including explainability, on a series of eight datasets.
Two out of the eight datasets consisted of data from regions in
the Global South: the first is a dataset containing demographic
and poverty-level features for over 70,000 households in Mexico
and the second contains data describing demographics of and the
use of financial services by over 33,000 people in Kenya, Rwanda,
Tanzania, and Uganda.

Prior work has highlighted the lack of relevant training data
available for contexts in the Global South [1, 132]. For the papers in
our dataset, when relevant data was not available, researchers com-
monly built their own datasets to fill this gap. For instance, Beluzo
et al. [17] constructed a dataset with over one million features,
extracting data from birth and death systems in Brazil to under-
stand the socioeconomic and demographic factors contributing to
neonatal deaths. Agarwal et al. [3] created a dataset composed of
50,000 tweets posted before, during, and after a sociopolitical event
that occurred in India. They then leveraged this dataset to create an
XAI tool to characterize the spread of disinformation and misinfor-
mation on social media. Similarly, Zainab and Chandramouli [154]
created a dataset of over 16,000 Reddit posts and developed an XAI
model to understand what features in social media posts indicate
depression. Such work highlights the additional labor required in
generating local datasets that researchers in the Global South may
need to undertake when implementing XAI systems.

Did the research involve target users? Human-centered design
and HCI4D best practices generally require that researchers engage
with intended users, often via fieldwork to understand the needs
of these users before building or deploying new technologies [31].
Therefore, we wanted to see if papers in our dataset followed these
basic best practices. Only three of the 16 papers engaged with tar-
get users [13, 108, 125]. In one of these papers, Sajja et al. [125],

researchers at IBM Research India, partnered with a local fashion
house to develop an XAI tool for forecasting sales of clothing prod-
ucts. They first created personas to understand the two types of
users of their tool: clothing designers and commercial buyers (in-
dividuals who determine what items are stocked in retail stores).
Next, the researchers actively consulted with the users to inform
their design decisions for the XAI tool and used techniques such
as SHAP and counterfactuals to explain predictions for product
recommendations. Finally, in a survey used to gauge the usefulness
of the developed tool, the researchers obtained feedback from their
users, finding that the tool improved their respective workflows
and made it easier to understand sales trends. We find it particularly
notable that the product was built with the end users in mind and
that the developers were intentional in including them throughout
the entire development process.

Instead of directly engaging end users, in one case, researchers
worked with domain experts to design an XAI tool to mitigate the
impact of mosquito-borne diseases like malaria, dengue, West Nile
virus and Zika fever. Minakshi et al. [93] consultedwith taxonomists
in Uganda, India, Brazil, and the United States to develop a tool to
help public health workers identify mosquitoes capable of spread-
ing diseases. The authors incorporated explainability into their
tool by visualizing feature maps that highlighted pixels within the
output images that were most significant in classifying the genus
or species of mosquitoes. While taxonomists were not necessarily
the target users for this tool, the authors used feedback from these
experts to validate the results from the ML model, which they plan
to deploy soon with public health partners in low-resource regions.
In addition to the technical expertise, the researchers received af-
firmation from taxonomists who emphasized the need to design
such a tool. In this work, the researchers shared: “The taxonomists
we partnered with in India, Sub-Saharan Africa, Brazil and USA are
all close to 70 yrs old, and they indicated that taxonomy is indeed a
dying field, and related expertise is hard to attract and train.” In cases
like the problem presented by Minakshi et al. where an XAI tool is
being introduced with the intent of replacing skilled experts, the
knowledge of such experts is still needed to ensure that the results
produced from XAI systems are both accurate and explainable to
end users who may not possess specific domain knowledge.

Unfortunately, our analysis shows that these positive examples of
engaging with intended users or other stakeholders was relatively
rare (only 3 out of 16 papers). This is concerning given the generally
agreed upon importance of tailoring solutions to local contexts and
communities in HCI4D and ICTD research.

What XAI methods were used? Since the inception of XAI,
methods have shifted from being purely technical to incorporating
human-centered techniques that aim to make AI understandable to
non-experts and users in real-world settings [38, 69, 84, 99? ]. Thus,
we wanted to understand what methods and techniques were being
employed by XAI work targeting the Global South. The majority
(13) of the papers in our dataset used a technical XAI method to
develop an ML model or to conduct an analysis on data. We con-
sidered a paper to be "technical" if it developed or used an XAI
algorithm, toolkit, or library such as the ones described in Section
2.2. Nearly all of the papers used an algorithm such as SHAP or
LIME to understand how features within their datasets contribute to
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model decision-making. An example is work by Stevens et al. [137]
who used SHAP to explain the process of predicting loan outcomes
on Kiva.org, a website that crowdfunds loans for entrepreneurs in
developing countries. Their work also incorporated the use of AI
Fairness 360, a toolkit developed by IBM [58], which uncovered a
potential gender bias on the platform.

While the existing XAI algorithms and libraries are generally
helpful in illuminating decisions made by ML models, these expla-
nations often require a significant amount of technical knowledge
to both implement and interpret them. Visual-based XAI methods
could be a step towards centering explainability around novice
technology users and others with low AI/ML domain knowledge.
An example along these lines is work by Minakshi et al. [93] which
used XAI to produce visualizations highlighting pixels within im-
ages processed by their AI model that indicate features of specific
genus or species of mosquitoes.

Several researchers incorporatedmultiple XAImethods into their
model development [46, 125, 137]. For example, in work using XAI
to understand what factors influenced market volatility during the
first year of the COVID-19 pandemic in India, Ghosh and Sanyal [46]
use the Shapash library to conduct their analysis which leverages
two XAI techniques: LIME and SHAP. While more explanations
may be useful to help improve model comprehension, the usage of
XAI also brings up concerns around the increased computational
complexity of AI models [56] and high computing resources needed
to run them.

Of the three papers that did not use technical XAI methods, we
found that two used qualitative research to explore XAI. For ex-
ample, Okolo et al. [108] conducted an interview-based qualitative
study in rural India to examine community health workers’ percep-
tions of how AI-enabled tools would fit into their workflows. The
researchers used insights from the interviews to examine how de-
signers and developers of AI systems can leverage explainability for
novice technology users, especially those situated in low-resource
environments within the Global South. Similarly, Wakunuma et
al. [147] examined the potential of AI in advancing the third Sus-
tainable Development Goal (SDG) that focuses on good health and
well-being. The researchers employed a SWOT (strengths, weak-
nesses, opportunities, and threats) analysis—a method commonly
used in strategic planning—to explore the socioethical implications
involved with employing AI to address the third sustainable devel-
opment goal and how explainable AI can be used to improve model
transparency in medical decision-making.

The last non-technical paper in our dataset focuses on critically
examining the use of XAI to address global development challenges
in Africa. In their work, Carman and Rosman [26] use epistemolog-
ical framing (by asking the question ‘how does it work?’) to survey
the development of XAI and examine the feasibility of applying XAI
within the African context. Such framing aims to understand how
XAI can work to be in alignment with African values and interests.
When applying explainability to AI research using an epistemo-
logical framework, the authors propose identifying objectives and
goals for intelligent systems that align with the local contexts they
will operate in. This goal aligns directly with common practices in
HCI4D and ICTD that aim to ensure technologies are developed
for and with local communities. Carman and Rosman also acknowl-
edged the onerous demand that African researchers may face when

integrating explainability techniques, tentatively proposing a divi-
sion of labor to address such concerns. To anticipate ethical issues
that may occur when developing XAI systems for use within Africa,
Carman and Rosman propose that ML practitioners work in tandem
with experts in the social sciences and humanities to ensure that
the underlying values of respective societies are prioritized and
embedded in the resulting systems.

What challenges arose when building and putting XAI tools
into practice? Finally, well-known best practices in ICTD often
call for deploying technologies directly with communities [9, 23].
However, within the field of AI in general and XAI in particular, we
find this to be a rare occurrence. Only one of the 16 papers in our
dataset developed an XAI system that was put into practice with
real-world users [125]. This small number indicates that deploying
XAI systems is still a novel practice and many of the papers in
our dataset were exploratory in nature, and not at the deployment
stage.

Next, we were interested to see what challenges and issues were
encountered as the researchers tried to put XAI into practice. In
their work, Sajja et al. [125] developed an XAI tool to forecast
demand for products in the fashion retail industry in India. The
researchers collaborated with a local fashion house, deploying the
system to analyze past fashion seasons and to help plan for future
ones. The researchers noted data being a challenge at multiple
points in the development lifecycle of their XAI model. First, the re-
searchers mention the limited number of data points that prevented
them from building an explainable model at a level comparable
to the baseline modeling framework, indicating the extra work
needed to gather additional data and to employ XAI techniques
in a real-world setting. Prior research has noted the lack of "data
equity" in the Global South, detailing the extreme efforts needed
by AI/ML practitioners in this region to collect, curate, and employ
data for use due to the lack of access to relevant datasets and limited
infrastructure to train models [127]. Building upon this point, Sajja
et al. also highlight the extra effort undertaken by the designers
they collaborated with to contribute detailed data to the system
before operating it. Several other pieces of scholarly work have
detailed similar challenges when collecting data for algorithmic sys-
tems in developing contexts, noting the burden data collection and
processing takes on frontline healthcare workers, data stewards,
and ML developers in the Global South [62, 142]. As one of the few
XAI systems deployed for real-world use in the Global South, Sajja
et al.’s work provides a much needed perspective into the realities
and challenges of deploying XAI systems into the wild.

The overall lack of deployments seen within our dataset is a
bit worrying, but falls in line with the majority of AI systems not
being deployed for real-world use. We also understand that there
exist a combination of challenges in the Global South including
infrastructural limitations, lack of AI practitioners, and a large
number of novice technology users that may possibly inhibit the
successful integration of such systems, as seen in work by Beede
et al. [15]. Despite the lack of deployments, a few papers in our
dataset mentioned the possibility for future work to implement
their respective systems. For example, Beluzo et al. [17] state: “we
intend to evaluate the applicability of the proposed model in Brazilian
data.” Another paper mentions how “these insights have led to a
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currently ongoing field trial for assessing the real-world utility of
this approach” [13]. Minakshi et al. [93] also mention “currently, we
are focusing on piloting our system in low income countries where
taxonomic expertise is harder to find.” Similarly, Agarwal et al. [3]
note the ongoing development of their XAI-enabled classifier to
measure misinformation spread during socio-political events in
India.

Progress towards putting XAI systems into practice is an impor-
tant next step in testing the viability of such technologies. As XAI
development continues to progress within the Global South, we
hope to see real-world deployments rise in number. However, if
researchers deploy XAI techniques that do not work, it might cause
more harm than good to local populations. With this in mind, cau-
tious approaches to deployment are needed when putting nebulous
technologies like XAI into practice.

5 DISCUSSION
In recent years, there has been growing enthusiasm from govern-
ments, companies, and academics about the potential for AI to
solve important problems in the Global South, including in health-
care [25, 100, 110, 121, 134, 151], poverty [54, 81, 102], agriculture
[87, 130], and other high-stakes domains. However, research has
shown that AI also has the potential to exacerbate and reinforce
systemic problems, including bias and discrimination [19, 39, 104].
If care is not taken to make AI systems explainable and understand-
able to the people who will use them, they may end up causing
more harm, particularly to marginalized communities [15, 127]. Our
systematic review provides a first look at research that attempts
to make AI systems explainable to communities and stakeholders
in the Global South. In this section, we synthesize our findings to
discuss (1) the current state of XAI research in the Global South,
(2) data and model considerations for building XAI systems for the
Global South, and (3) the need for human-centered approaches to
XAI in the Global South.

5.1 The state of XAI in the Global South
Our findings show a number of positive trends across existing
research that has focused on XAI in the Global South. First, much of
the research involves authors from institutions based in this region.
This is encouraging since researchers who are from, or have spent
significant time in the domains where technologies will be deployed
aremore likely to understand local contexts. Second, the researchers
generally took steps to ensure that their work involved (at least
some) data that was local to the context, rather than assuming that
data from the Global North would be applicable to contexts in the
Global South. In addition, most of the current research focused on
advancing social progress by focusing on critical domains, such as
healthcare, education, and economic mobility, and targeted a very
diverse range of potential users and communities.

However, our findings also highlight concerning gaps that exist
in this nascent body of work. First, the small amount of research
yielded by our review itself is concerning; we found only 16 papers
on XAI in the Global South compared to thousands that study XAI
in the Global North [88, 97, 117, 119, 120], highlighting the urgent
need to advance the state of XAI in the Global South. Second, we
saw a lack of empirical studies conducted with local communities

who would be the stakeholders and primary users of XAI systems.
Failing to understand the nuances that affect real-world XAI imple-
mentations could exacerbate existing inequities, a trend that has
already been seen in the deployment of AI systems in the Global
North [22, 107, 122]. Additionally, there is little understanding of
how technology users in the Global South perceive and interact
with XAI technologies. This lack of research leaves the field with
significant knowledge gaps as AI practitioners may not have the
background knowledge on how to design and develop XAI systems
for users in low-resource contexts. We thus call for researchers to
engage communities throughout the project lifecycle and conduct
studies with the intended users and populations whowill be directly
impacted by implementation of such systems. Although the same
critique regarding the lack of engagement with end users might be
true of much AI research, it is especially important in the contexts
we are concerned with, where assumptions about prior experience
with technology/AI may not hold, and where frontline workers
may be expected to be able to critically use these technologies in
their work in high-stakes domains.

However, current practices within the peer review process for
AI and ML conferences and journals do not incentivize practical
implementations of intelligent systems, often favoring advances in
benchmarks over real-world deployments [18, 72, 146]. As research
within XAI continues to expand into the Global South, these unbal-
anced incentives may be replicated, preventing researchers from
building effective XAI systems in a region where AI deployments
are already not understood well. Increasing scientific investments
to support advances in XAI research in the Global South as well as
realigning incentives to encourage replication and practical imple-
mentation could improve how XAI is used within this region and
enable researchers to build effective, context-specific tools.

There is also considerable expense to testing XAI systems with
users in real-world settings and such work can be limited to insti-
tutions that have both the human and physical infrastructure to
pursue deployments. For example, the one paper in our corpus that
puts an XAI system into practice [125] was spearheaded by IBM
India, an institution that has a wealth of resources and is a global
leader in AI research. Given the additional complexity that XAI
techniques can add to AI models, having the necessary financial
and infrastructural resources to run computationally heavy mod-
els is an expense that some institutions within the Global South
may not be able to bear. Along with increased efforts from HCI
and AI practitioners to actively conduct XAI-centered research in
the Global South, it will take considerable effort from the broader
AI/ML community to embrace the value of making XAI practi-
cal for real-world use in the Global South, and throughout other
low-resource domains.

5.2 Data and model considerations for building
explainable AI for the Global South

Our analysis suggests a need for AI and HCI practitioners to take
into account certain considerations when designing and building
explainable systems. These considerations center on three things:
data, models, and users. In terms of the data that is needed to cre-
ate XAI systems, as mentioned previously, all of the papers in our
review that involved technical implementations of XAI methods
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made an effort to use at least some data that was local to the con-
text. However, several of these papers discussed the challenges,
additional labor, and associated burdens of needing to also create
the datasets that made their work possible. As one example, Sajja
et al. [125] detail the additional work needed to build XAI systems
of comparable quality to baseline AI models.

The lack of data relevant to local contexts, especially in the
Global South, could hamper effective deployments of XAI systems.
Using data that is pertinent to local contexts to train ML models
and build XAI systems ensures that problems that such tools are
aiming to address do so effectively. However, as several papers in
our review discussed, getting access to such data or being able to
build context-relevant datasets is often not an easy task. Combined
with the data-intensive nature of XAI methods, the limitations
that exist for practitioners in low-resource regions when collecting,
processing, and integrating data into ML pipelines will need to
be carefully accounted for in any deployments of XAI systems
in the Global South. A growing area of scholarship has begun to
focus on understanding the factors that impact data practices in
the Global South [1, 62, 114, 127, 142], providing a more empirical
view into the issues of scarce and low quality data experienced by
researchers in low-resource regions. In their work interviewing
AI practitioners in India, East and West African countries, and the
United States, Sambasivan et al. [127] push for a move towards
“data excellence" where HCI methods are incorporated early and
throughout AI data practices and partnerships are formed between
AI practitioners, application-domain experts, and field partners to
prioritize data collection, documentation, and maintenance. In line
with the suggestions above, we propose that increasing training in
data literacy for the target end users of AI systems in the Global
South and aligning the use of empirical methods in HCI specifically
with the goals of XAI can make progress possible in ameliorating
existing data challenges.

We also see a need for AI developers and researchers to focus
on building new methods of explainability that account for infras-
tructural and model limitations. Recent failures in the integration
of AI systems in the Global South [15] highlight issues that plague
AI deployments in these regions, such as the lack of understanding
of local contexts before attempting deployment, or incorporating
training data that does not reflect real-world input data. These is-
sues could also impact XAI, leading to XAI systems that provide
unintelligible explanations or that are structurally infeasible to
run in low-resource environments. Of course, this does not mean
that researchers should refrain from pursuing XAI research in the
Global South—only that there is plenty of room for novel methods
to emerge that take into account the constraints presented by these
contexts.

Finally, the small number of papers in our review that engaged
with target communities point to additional data and model con-
siderations required when building XAI for the Global South. For
example, Okolo et al. [108] discuss potentially problematic power
dynamics that might arise when deploying AI systems, suggesting
that people could potentially defer to decisions made by intelligent
systems and assume that the system, rather than their own judg-
ment, is correct. These considerations highlight a need for work
that seeks to understand the intricacies of presenting information
from XAI systems in ways that balance power dynamics while

enabling users to retain their autonomy in choosing whether to
follow automated predictions. Of course, XAI can only be truly
useful and accessible if it meets the needs of end users, particularly
those that do not fit the traditional archetype of an AI practitioner
or ML developer. This suggests a need for more human-centered
approaches to XAI in the Global South, as we now discuss.

5.3 Towards human-centered explainable AI in
the Global South

Our findings and discussion indicate the need for an overhaul of
current practices within XAI development. While some work in
XAI has begun to explore human-centric approaches to providing
explanations via intelligent interfaces [45, 99, 133, 139? ], the lack
of such papers in our review suggests that the vast majority of
this work is situated in the Global North and focuses on users
who are relatively technology-literate. Technology literacy takes
many shapes [89, 90, 95] but is a factor that impacts the adoption
of technology [153] and is likely to play a significant role in the
adoption of XAI systems and tools.

Of course, it is important to note that the audience of XAI will
vary depending on whether the explanations are targeted towards
the developers of these systems or human end users (some of whom
may have limited experience interacting with technology) and en-
suring that their respective needs are addressed. We see rich oppor-
tunities for future human-centered XAI research that specifically
explores how to explain AI decisions to people with low levels
of technology literacy, while also ensuring that these techniques
are computationally feasible in low-resource regions. Researchers
will further need to engage with questions and/or explore novel
methods surrounding how to explain model outputs (e.g., precision,
accuracy, ROC, AUC, etc.) and model decisions in languages and
formats accessible to low-income, low-literate users who are in-
creasingly seen as a target for AI/ML interventions for Social Good.
We acknowledge that difficulty understanding explanations from
XAI systems is not limited solely to low-literate users within the
Global South. Currently, many state-of-the-art XAI systems pro-
vide explanations that only people with machine learning expertise
are able to understand. As approaches within the field continue to
move toward making AI explainable for users with varying levels
of technical knowledge [27, 37, 48, 55, 99, 138? , 139], we hope that
XAI will no longer remain a grand challenge.

While the potential harms of AI tomarginalized populations have
been discussed thoroughly in literature [19, 22, 39, 104], little work
has been done to understand the specific harms of XAI to marginal-
ized communities. Work by Ehsan and Riedl [36] introduces the
concept of “explainability pitfalls” where AI explanations may un-
intentionally cause users to defer to decisions from AI systems,
disregarding their own judgment. In the Global South, explainabil-
ity pitfalls could particularly affect users who have little technical
knowledge and experience operating AI technologies. Prior work
has illustrated this in the context of a proposed AI system to diag-
nose pneumonia [108]. If an explanation for an incorrect diagnosis
from an AI system is presented to a community health worker with
low AI knowledge, there is a possibility that they would be likely to
accept such a decision due to misplaced trust and over-estimation
of AI capabilities.
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Making AI explainable can be a viable pathway for making AI
more useful in real-world environments and increasing its respec-
tive ability to improve pressing social issues in domains such as
agriculture, healthcare, and education. Knowing the circumstances
that affect how different groups of people across various settings
understand model decision-making will aid in making XAI sys-
tems more responsive to their respective needs. Over the next few
decades, there will be tens of thousands of works published in the
field of XAI. We envision a future of XAI in the Global South that
centers humans while acknowledging the specific constraints as-
sociated with deploying such systems in regions where access to
data, limited computing infrastructures, and low AI literacy are
present. Engaging with communities most likely to benefit from
XAI through fieldwork and ethnography and then using such in-
sights to train AI practitioners on the needs of these users could
help align the values of local communities with those of the sys-
tems that aim to serve them. While it will take significant effort
and collaboration to reach this goal, it is critical that the broader AI
and HCI research communities converge on a research agenda that
will address existing inequities and actively work to solve them in
inclusive, sustainable ways.

6 CONCLUSION
This paper contributes a systematic review of emerging XAI re-
search focused on contexts in the Global South. Our search method-
ology identified 16 papers that, together, highlight both encourag-
ing trends and concerning gaps emerging in XAI research in the
Global South. We present a detailed look at these 16 papers, includ-
ing when and where the research was conducted, datasets used,
research approaches taken, communities targeted, and whether
the work was put into practice or not. We then discuss considera-
tions for expanding XAI research in low-resource settings and with
communities who may have low levels of technology literacy. Our
findings suggest new directions for XAI research to ensure that
the field addresses growing inequities and makes AI explainable to
people from diverse, global contexts.
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