
Open Data Kit: Tools to Build Information Services for
Developing Regions

Carl Hartung
Computer Science and

Engineering
University of Washington

Seattle, WA 98195
chartung@cse.uw.edu

Yaw Anokwa
Computer Science and

Engineering
University of Washington

Seattle, WA 98195
yanokwa@cse.uw.edu

Waylon Brunette
Computer Science and

Engineering
University of Washington

Seattle, WA 98195
wrb@cse.uw.edu

Adam Lerer
Computer Science

Massachusetts Institute of
Technology

Cambridge, MA 02139
alerer@mit.edu

Clint Tseng
Computer Science and

Engineering
University of Washington

Seattle, WA 98195
cxlt@cse.uw.edu

Gaetano Borriello
Computer Science and

Engineering
University of Washington

Seattle, WA 98195
gaetano@cse.uw.edu

ABSTRACT
This paper presents Open Data Kit (ODK), an extensible,
open-source suite of tools designed to build information ser-
vices for developing regions. ODK currently provides four
tools to this end: Collect, Aggregate, Voice, and Build.
Collect is a mobile platform that renders application logic
and supports the manipulation of data. Aggregate provides
a “click-to-deploy” server that supports data storage and
transfer in the “cloud” or on local servers. Voice renders
application logic using phone prompts that users respond to
with keypad presses. Finally, Build is a application designer
that generates the logic used by the tools. Designed to be
used together or independently, ODK core tools build on ex-
isting open standards and are supported by an open-source
community that has contributed additional tools. We de-
scribe four deployments that demonstrate how the decisions
made in the system architecture of ODK enable services that
can both push and pull information in developing regions.

Categories and Subject Descriptors
H4.3 [Information Systems Applications]: Communi-
cations Applications; H5.2 [Information Interfaces and
Presentation (e.g., HCI)]: User Interfaces; C2.4 [Distributed
Systems]: Client-server, distributed applications

General Terms
Design, Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICTD2010 December 13-15, 2010, London, U.K.
Copyright 2010 ACM 978-1-4503-0787-1/10/12 ...$10.00.

Keywords
mobile computing, mobile phones, ICTD, client-server dis-
tributed systems

1. INTRODUCTION
Over the last fifty years, advances in information and com-

munication technologies (ICTs) have transformed the way
we create, retrieve, update, and delete information. Despite
this revolution in information management, much of the
world has not benefited from these technological advance-
ments. To address many of these disparities, there has been
a push from development agencies to apply evidence-based
development wherein best available data is used to inform
development challenges.

In a sense, this approach is not new. From agricultural
extension to immunization campaigns, services that push
and pull information in developing regions have been at the
heart of global development. However, even with many years
of practice, providing these services is still a difficult task.
Current practice, which is primarily paper-based, limits the
scale and complexity of the services that can be provided,
and thus the impact of the intervention.

With the growth of mobile phone usage in these regions [38],
there have come opportunities to digitize and automate many
of these services in a cost effective manner. Of course, com-
puting is no panacea, as noted by Toyama et al. [50] and
Brewer et al. [30]. Challenges ranging from user limitations
to infrastructure constraints have proven to be particularly
pernicious. In the rare instances where the introduction of
computing has been successful, implementation has often
required a level of technical expertise not readily found in
situ [39].

For computing to truly address the information gaps in de-
veloping regions, information services must be composed by
non-programmers, deployed by resource-constrained organi-
zations, used by minimally-trained users, and remain robust
despite intermittent power and connectivity. To address
these challenges, we developed Open Data Kit (ODK) [17], a
modular, extensible, and open-source suite of tools designed
to empower users to build information services for develop-

ing regions. ODK currently consists of four tools: Collect,
Aggregate, Voice, and Build.

ODK Collect is a mobile platform that renders complex
application logic and supports the manipulation of data types
that include text, location, images, audio, video, and bar-
codes. ODK Aggregate provides a “click-to-deploy” server
that supports data upload, storage and transfer in the“cloud”
as well as on local servers. ODK Voice renders application
logic using automated phone prompts that users respond
to with keypad presses. Finally, ODK Build is a drag-and-
drop application designer that generates the logic used by
the tools.

Designed to be used together or independently, ODK tools
build on existing open standards and empower individuals
and organizations to compose services that collect and dis-
tribute information in the developing world. ODK is sup-
ported by an open-source community that has contributed
training documents, localization support, as well as addi-
tional tools.

Examples of how ODK can be used include:

• Government workers completing socio-economic sur-
veys about households in a district.

• Agricultural extension workers creating an application
with video and audio clips explaining farming tech-
niques.

• Teachers implementing games with interactive ques-
tions and answer tutorials and automatic score record-
ing.

• Crisis workers capturing images and locations of dam-
aged areas after an earthquake.

• Funders receiving geo-tagged reports of interventions
they have supported.

• Clinicians building decision support applications that
use patient data to help determine when to administer
tests.

• Microfinance institutions tracking transactions from
lenders and borrowers.

• Indigenous tribes cataloging their trees to enable par-
ticipation in global carbon markets.

• Community health workers managing household visits
to pregnant women.

In this paper, we describe how ODK differs from previous
work, detail the set of tools we currently provide, and eval-
uate four ongoing deployments. We also discuss how the
design decisions made in the system architecture of ODK
were key to enabling a large and varied set of applications
for developing regions.

2. MOTIVATION
We examined existing data collection and dissemination

systems before deciding to build ODK. Here we briefly de-
scribe these systems, their limitations, and how they influ-
enced our design decisions. We provide a more extensive
discussion of related work in Section 5.

Historically, information services for developing regions
have been PDA-based [37, 34, 7]. The first example of

these is CyberTracker [4], a system first developed in the
mid-1990s as a way to enable non-literate animal trackers
to record observations on PDAs (sometimes with attached
GPS units) using a purely graphical and non-linear interface.
Trackers, when observing a specific animal behavior, tap a
representative icon on the screen to mark that behavior. For
applications such as socio-economic surveys, CyberTracker
replaced animal behavior icons with icons representing fam-
ilies, houses, and marriage status.

CyberTracker is still in wide use today and has added
functionality including a form designer, data synchroniza-
tion over the web, and image capture. While these up-
grades build toward a more generic system, they do not
change the fundamental use case and interactions. That
is, CyberTracker is designed for gathering large quantities
of geo-referenced data for illiterate field observers and syn-
chronizing those observations to a local computer.

For broader use cases than CyberTracker targets, Pen-
dragon Forms [20, 1] has been a popular and fully-featured
commercial solution that includes a form designer, data syn-
chronization, multimedia support and forms with navigation
logic. Although designed for developed regions, Pendragon
Forms has also been used all over the world [29, 48].

Our work differs from Pendragon Forms along four dimen-
sions that are critical for resource-constrained environments:
cost of deployment, ease of extensibility, available devices,
and data transport. For the functionality ODK provides for
free, Pendragon Forms requires $80 per user. Additionally,
because of our open-source license, organizations are free
to modify and customize the applications as needed. Fi-
nally, ODK runs on a variety of phones, netbooks, tablets
and supports multiple methods for transferring data to other
services.

There are free and open-source competitors to Pendragon
Forms that we also considered. Java Platform, Micro Edi-
tion (J2ME) phone-based data collection clients such as Front-
lineForms [9], EpiSurveyor [8], CommCare [3], and JavaRosa [14]
have become popular as the prices of Java-enabled phones
have fallen. Unfortunately, these phones live in a frag-
mented ecosystem that negatively impacts software devel-
opment and usability.

Applications must often be signed by the vendor, carrier,
or manufacturer before interactions with storage, network-
ing, or hardware accessories are usable. Without the appro-
priate digital certificates and signatures, users are prompted
with confusing dialogs before every such action. The sign-
ing process can require months of waiting and thousands
of dollars. Even after signing authority is obtained, cap-
turing images, audio, video, and location remains difficult
because each device implements the interface to its under-
lying hardware differently. J2ME programmers are forced
to test every software release on each physical device they
wish to support – a requirement that nullifies the benefit of
a wide phone base.

Like Pendragon Forms, many of these J2ME-based sys-
tems do not support the free flow of information that is
captured. For example, to use FrontlineForms on a phone,
a user can only transfer data to/from a PC running Front-
lineSMS. Furthermore, FrontlineForms uses a proprietary
format that makes it difficult for organizations to transfer
data using another mobile client or service.

In the academic literature, the best example of data cap-
ture and survey software is Froehlich et al.’s MyExperi-

ence [35]. MyExperience gathers objective data such as
user context (as sensed by the device. e.g., current loca-
tion) along with sensor readings. It uses context-triggers to
capture in situ subjective user feedback. MyExperience’s
use case is to collect quantitative and qualitative data in
the field to support studies of mobile technology usage and
evaluation and, more recently, psychological studies of hu-
man attitudes and behavior. However, there is no focus
on building information services that deliver information or
managing the specific challenges of developing regions.

CAM [43] by Parikh et al. is the first example of an infor-
mation service toolkit designed for developing regions. Pri-
marily used for data collection, key elements of the system
include a close linkage to paper forms, an image and au-
dio driven user-interface, support for both asynchronous or
synchronous connectivity, and a scripting language that de-
scribes form logic. CAM was designed to augment rather
than replace paper forms. Users fill out the paper form first,
and then use the phone’s camera to trigger data entry and
submission.

In ODK, we believe the problems CAM solves with the
linkage on paper are no longer an issue. The fact that later
CAM applications do not rely on paper-based navigation
suggests that others have reached the same conclusion [46].
While CAM’s procedural scripting makes it easier to design
iterative constructs in the forms, declarative languages offer
more in the way of validation and optimization – function-
ality that is useful in developing regions [31]. Finally, CAM
deployments have required forms to be designed by hand
and necessitated custom programmed back-end applications
to receive the submitted data.

In examining these systems, we found that many had sim-
ilar limiting factors. That is, they were built as monolithic,
siloed solutions using proprietary data formats and inter-
faces. Many were built for specific hardware platforms and
required large-scale redesign to update to newer technolo-
gies. Thus, we set out to build ODK with this set of re-
quirements:

• Modular Components. By focusing on creating
small, composable modules, we can create a system
that is easier to extend and modify.

• Open Source. By utilizing open source software and
interfaces based on open standards we are able to lever-
age a wider developer base allowing more participation
from the community.

• Cutting Edge Technology. Rather than building
for a specific hardware platform, we developed our
applications on systems that are likely to persist and
evolve over the long-term, provide a diversity of avail-
able form-factors, and adapt to new capabilities made
available by the rapid pace of innovation in this space.

The contributions of ODK center on how the choice of
platforms and architecture design enable and encourage the
growing number and variety of deployed applications. Though
some of these applications were envisioned by CAM [42], the
design requirements at the core of the ODK project have al-
lowed many of them to be realized in a short time. Although
one can certainly cobble together many of these services with
existing software and hardware, ODK that makes this com-
position easier and more deployable for non-programmers.

We argue these distinctions matter and as evidence we note
that parts of CyberTracker, MyExperience, CommCare and
EpiSurveyor have been ported to the ODK platform.

3. SYSTEM DESIGN

3.1 Example Scenario
To demonstrate the types of problems we intend ODK

to help solve, we present an example. Imagine a commu-
nity health organization working in rural Africa. This or-
ganization has several goals: to gather statistics about the
prevalence of HIV, TB, and malaria, to treat as many of
the affected people as possible, to educate the population
about how different diseases are transmitted, and to build
a database so that patients and their health care providers
have complete medical records. To accomplish these goals,
the organization has hired a handful of community health
workers to travel through villages, meet with residents, ad-
minister voluntary testing and counseling, and record the
results.

In this scenario, the community health worker needs:

• a way to record and/or retrieve patient information;

• training materials to educate the patients;

• knowledge of when to administer specific tests, and
testing materials; and

• a way to deliver the collected information to the central
clinic.

The organization needs:

• to train community health workers on how to register
new patients, or record follow up visits and test results;

• collect the forms and digitize them in a timely manner;

• secure and maintain a place to store all of their data
so it is easily retrievable; and

• potentially scale the size of their program from a few
health workers to hundreds, and from tens of patients
to millions.

This is what we consider an information service and to ad-
dress needs such as these, we developed a client for a mobile
phone that has the ability to record information, display ed-
ucation materials, provide decision support based on input
data, and wirelessly transmit information to a central clinic.
Additionally, we developed a scalable server-side data stor-
age system to easily store and retrieve the digital records.
Both client and server are designed to work in the challeng-
ing environments found in developing regions.

3.2 Tool Design
Open Data Kit is designed as a modular set of compo-

nents that can be used individually or in various configura-
tions (including modules that are not part of ODK) to cre-
ate information services in developing regions. The current
components shown in Figure 1 are an application designer, a
mobile device client, a basic interactive voice response (IVR)
system, and a server for data storage.

Application
Designer

Phone
Clients

Server
Storage

logic for user interaction

collected data from clientslogic to create data store

Figure 1: The current components of ODK. An ap-
plication designer generates logic for user interac-
tion and for data store creation. Phone clients can
run the logic locally and send data to server storage.

3.2.1 Application Designer
In order to allow non-programmers to build applications

with complex logic and interactions, we designed a web-
based graphical designer that allows users to create applica-
tions using a drag-and-drop metaphor. Our application de-
signer produces the logic used by all the other tools to render
the application to the user as well as create databases from
which data can be extracted for visualization and reporting.

3.2.2 Smart Phone Client
For our primary client, we designed a mobile phone ap-

plication that allows users to download application logic,
interact using physical or on-screen keyboards and touch,
and send information to servers wirelessly. Mobile phones
are ideally suited to the types of applications we targeted
because of their small form factor, lower price relative to
PCs and laptops, ability to run in disconnected environ-
ments with intermittent access to power, and almost uni-
versal familiarity amongst our typical users.

We made the controversial decision to build our appli-
cation using current generation smart phones. We chose
these phones for reasons of their programmability, robust
feature sets, enhanced interaction modalities, and increased
processing power. Current generation mobile phones have
features such as built-in cameras, GPS, and touch screens.
Unlike their predecessors, new operating systems and pro-
gramming APIs give developers unfettered programmatic
access to these components. Furthermore, memory and pro-
cessors in the current generation of phones are approaching
the speed of laptops, removing many of the constraints which
impeded previous systems.

While others considered such phones to be expensive and
unavailable in developing regions, we predicted that the trend
of increasing mobile adoption would, within the next few
years, lower cost and increase availability. So far, prices of
such phones have continued to drop and carriers in these
regions have started offering the phones for sale.

Since current generation smart phones would likely be too
expensive for many living in developing regions, we targeted
our tools at the employees of organizations (non-governmental
organizations (NGOs), government ministries, etc.) working
in these resource-constrained environments. Even so, given
the current trends, we suspect that our system will soon be
used for crowd-sourcing data, or even creating local busi-
nesses using ODK for information gathering and delivery.

3.2.3 Server Storage
To simplify the process of data storage and management,

we designed a server that could run either locally on a PC
or on one of several cloud computing infrastructures. Many
organizations lack the computing infrastructure to store and
analyze large amounts of data, as well as the technical knowl-
edge required to create and maintain a data storage system.
Additionally, the costs associated with running, maintain-
ing and scaling traditional database backends can be pro-
hibitive.

Our server builds a data store for a specific application
when that logic is uploaded by a user. That is, the same
application logic has dual purposes: for collecting informa-
tion when rendered on the client device, and for provid-
ing a guide to the server on how to build a corresponding
database. The logic can then be sent to clients for user in-
teraction, and clients can send resulting data back to the
server. Users can view the results in a table format, or ex-
port the data into one of several other formats such as CSV
(comma-delimited spreadsheets) for importing into statisti-
cal analysis tools, JSON (a standard serialization protocol)
for external servers, or KML (mapping markup language) to
be viewed on a variety of mapping software.

By leveraging the cloud version of our server, organiza-
tions can pilot a system without the burden of purchas-
ing, configuring and maintaining local servers. From there,
cloud services allow virtually unlimited scalability. Run-
ning servers in the cloud also alleviates the challenges of
power outages, finding skilled IT managers, managing back-
ups, hardware failures, and protecting from viruses. We
support multiple cloud hosting solutions.

We realize, however, that many organizations may be hes-
itant to fully trust cloud computing services due to privacy
or political concerns. Thus, we designed our server to also
run locally on a PC for those wishing to keep their data in-
country and on storage under their complete control. Users
can choose either approach to store their data and migrate
between them at any time as the interfaces to both types of
servers are identical.

3.2.4 Basic IVR System
In order to enable users without smart phones to use our

system, we designed an interactive voice response (IVR) sys-
tem that can be used to call basic phones owned by the gen-
eral population. To interact with the service, users connect
to the system by responding to automated telephone calls,
or by calling a central number. Once connected, users can
then interact with application logic by entering numbers on
their keypad or recording audio responses.

Voice prompts are recorded in the local language or dialect
to allow illiterate populations to be included. This basic
IVR system was designed to use the same logic as our smart
phone client, enabling a variety of ways to interact with the
system. IVR to client’s own phones can be especially useful
for follow-up data gathering when sending a human worker
may be cost-prohibitive or inefficient.

4. SYSTEM IMPLEMENTATION

4.1 XForms: A Common Format
To ensure that each of the tools could be used indepen-

dently but also with each other, we use the XForm stan-
dard [28]. XForms are an XML-based form description stan-

dard designed by the W3C for the next generation of web
forms. We implemented the OpenRosa [19] subset of XForms
that makes our tools compatible with many others’ tools
in the NGO community and enables these organizations to
easily move to different technologies and systems without
re-building their applications.

With OpenRosa XForms, designers can specify a wide
variety of control and data types including: text, integer,
decimal, select-one, select-multi, image, audio, video, bar-
code, and location. Designers can also create entry con-
straints, read-only prompts, required fields, multi-lingual
translations, and branching logic.

4.2 Build: Application Designer

Figure 2: In ODK Build, prompts appear on the left
of the screen while properties appear on the right.
Users rearrange prompts using a drag and drop in-
teraction in the web browser.

By using the XForms standard, ODK provides authors
with flexible options for designing services to fit their needs.
Unfortunately, this comes at the cost of ease of use. The
structure and syntax of the XML-based format is more com-
plex than is needed to build the majority of forms, which
are usually short and linear. This often leads to confusion
among users and presents a barrier to adoption.

ODK Build enables users to easily create their applica-
tion logic and generate XForms without a detailed working
knowledge of the XForms standard. Build lets designers
drag and drop each prompt the user will interact with onto
a canvas as shown in Figure 2. Each prompt has a set of
properties (prompt text, data type, etc.) that users can edit.
Users can rearrange ordering of prompts or add custom logic
to each prompt. Build is implemented as an HTML5 web-
based application using Javascript and Ruby Rack.

In keeping with the aim of providing more accessible meth-
ods to author services, a number of compromises were made
with regards to the more complex, but less commonly used,
features of XForms. For instance, while we still provide a
means to implement more advanced constraints, we high-
light only basic range constraints for most data types; and,
while in reality XForms defines whether or not to display
each prompt based upon a set of rules specific to that prompt,
we optimize for the more common case and represent condi-
tional logic as a physical branch, with each branch contain-
ing multiple inter-related prompts.

To make Build widely available, we host a running in-
stance on our own server so that anyone with a web browser
on the internet can immediately begin authoring services for
their own use. For offline support, users can download the
source and run an instance on their local machine.

4.3 Collect: Smart Phone Client

Figure 3: A location prompt in ODK Collect cap-
tures latitude, longitude, altitude and accuracy from
the phone’s GPS.

Collect is ODK’s mobile client that runs on any device
capable of running the Android operating system. Col-
lect takes the XForm logic and displays prompts to the
user in a one-prompt-at-a-time format. Users navigate for-
ward and backward by moving their finger across the screen
(with a similar gesture to turning a page in a book). Col-
lect also supports a jump-to-prompt feature allowing a user
to skip forward or backward quickly within the applica-
tion. Prompts can be specified as one of the following:
free text, integer, decimal, select-one (radio buttons), select-
multi (checkboxes), image, audio, video, barcode, or GPS
location (as shown in Figure 3). Any prompt element can
also be made read-only to convey, rather than record, in-
formation. Collect supports multiple languages, advanced
constraint checking, and regular expression checking of en-
tered data. Additionally, Collect supports branching and
repeating groups of prompts to allow for more complex form
interactions (e.g., collecting basic demographic data for ev-
ery member of a household).

In order to support disconnected operation, Collect stores
application logic and resulting data on the phone as XML
files along with associated binary files (images, audio, video,
etc.). The user can choose to synchronize with a server
at any time using any available internet connection. Files
are sent using a standard HTTP POST to any OpenRosa
compatible server (such as the servers we provide but many
others as well). These files may be transferred to and from

the phone with a USB cable connected to a computer, or by
removing the phone’s SD card and readings its contents on
a completely separate device.

Collect is written in Java, and runs on smart phones that
run Android, an open-source operating system for mobile
phones. Development for Android is made simple because
the Android API has been standardized so that applications
do not concern themselves with the details of the inter-
faces of the underlying hardware. Also, since Android is
not bound to a particular hardware implementation it runs
on a variety of devices including smart phones, netbooks and
tablets.

An additional benefit of the Android platform is its “in-
tent” system, that allows other applications to launch Col-
lect. For example, a developer can create a location-based
application that launches a survey when a user reaches a
specific location (in the style of MyExperience). Such an
application does not require any modification to Collect but
simply uses it as a subroutine. Existing phone applications
can be exploited by Collect using the same mechanism. For
example, Collect supports reading barcodes using a separate
application available from Android Market. New capabili-
ties can also be incorporated this way, allowing parallel de-
velopment and keeping the size of the modules as small as
possible.

4.4 Aggregate: Server Storage

Figure 4: ODK Aggregate can export data as a map.
Selecting an individual point on the map reveals the
data collected at those coordinates.

Aggregate provides a server repository to manage col-
lected data, provide standard interfaces to extract data (e.g.,
spreadsheets, queries, etc.), and integrate with existing sys-
tems via HTTP web requests. Aggregate supports returning
data in many standard formats including CSV (for statisti-
cal analysis), KML (as shown in Figure 4), and JSON (for
transport to other web services). Aggregate is designed to
be a generic data storage service that will run on the user’s
choice of computing platform. Importantly, it can receive
data from any phones and servers which are OpenRosa com-
pliant.

To achieve this model, Aggregate uses the concept of a
generic data storage wrapper to abstract away the details
of a specific data storage service, thus allowing the appli-
cation layer of Aggregate to call a common interface. This
abstraction allows the majority of Aggregate’s code to be

storage platform independent. Aggregate is written in Java
and designed to run in a standard Java web container –
the only restriction to its portability. To verify the design,
Aggregate was tested on two cloud services (Amazon Web
Services and Google’s AppEngine platform) and two tradi-
tional databases (MySQL and Postgres).

Aggregate’s interface and abstractions were designed to
simplify data management by creating an application that
is usable by people with only basic computer skills. Users
simply need to upload the XForm and Aggregate automat-
ically creates the new relations in the data store based on
the XForm prompt types. The creation of relations and data
mappings at runtime is unlike traditional object relational
mappings (e.g., Hibernate), that abstract database details at
compile time instead of runtime. Users are able to construct
queries using a web interface without knowing the syntax of
the underlying database’s query language. Aggregate’s web
interface also provides a report interface to retrieve data in
addition to the ability to export the stored data in common
data formats.

4.5 Voice: Basic IVR System

ODK Aggregate
Google App Engine, Amazon Web Services, Tomcat Server

ODK Voice
Tomcat Server

VoiceXML Engine
Prophecy, VXI, VoiceGlue

Phone Gateway
VoIP Provider, GSM Modem

PhoneComputer

Figure 5: The software stack that enables ODK
Voice.

ODK Voice is a platform for rendering XForms through
automated telephone calls. Users can interact by calling
with a phone or receiving automated calls from the system
and either entering answers on their keypad or recording
audio responses. Voice enables application interaction to
the millions of people in the developing world who already
have their own mobile phones [38].

ODK Voice is implemented as a Java web server applica-
tion that can run on Tomcat or other servlet engines (see
Figure 5). Administrative tasks, such as uploading XForms,
recording prompts, and scheduling outbound calls, can thus
be performed directly over the web. To render automated
(IVR) voice calls, ODK Voice produces VoiceXML, a W3C
standard for “creating audio dialogs that feature synthesized
speech, digitized audio, ... and DTMF key input”[27]. Using
the open VoiceXML standard allows ODK Voice to interface

with a number of voice engines.
To connect to a telephone network, the VoiceXML en-

gine interfaces to a gateway, which can either be a GSM
modem connected to the server or a remotely hosted voice-
over-IP (VoIP) gateway. Using a remote VoIP gateway pro-
vides the added advantage that the server can be hosted out
of country. For simplicity of deployment, the entire ODK
Voice infrastructure can be packaged and loaded onto a tar-
get server. Data collected from ODK Voice is submitted to
an ODK Aggregate instance for aggregation and viewing.

ODK Voice optimizes for learnability over efficiency, since
we expect most users to be novices; for example, there is
a dialogue after each question where the user can confirm
his answer or opt to repeat the question. Many default be-
haviors in ODK Voice can be overridden by special “hint”
attributes in the XForm, but this is not generally necessary.

Some types of questions are better suited to the voice
medium than others. In particular, string entry is very dif-
ficult over a telephone dialogue. Unlike writing a text mes-
sage, filling out a telephone string provides no immediate
feedback about what has been entered.

Our approach to string entry is to have users enter each
word letter by letter (e.g. 733 for “red”), and then have the
system “guess” the most likely word the user entered. Simi-
lar to predictive text systems like T9, the system maintains
a dictionary of all possible words (either a general dictio-
nary or a special corpus for that question); each word has a
likelihood value assigned to it.

When a user enters a series of digits, the system calculates
the number of errors between the entered numbers and each
word in the dictionary; the likelihood for that word is cal-
culated by multiplying the prior likelihood by the likelihood
of the calculated number of errors. The user can then pick
from a list of likely words. The dictionary priors are adap-
tively re-weighted so common answers are suggested first.
However, we find that it is easier to avoid string entry and
ask for answers through selection from a list or recording
audio.

5. RELATED WORK
Paper has been the perennial favorite for delivery and col-

lection of information in developing regions. However, the
very properties that make paper popular are also liabilities.
For example, after a natural disaster, quickly and accurately
documenting the extent of damage with GPS and images is
essential to planning a response [41]. In rural hospitals, help-
ing untrained nurses triage patients using complex medical
protocols is critical to effective health care [33]. Even basic
surveying without data validation at the point of entry can
result in serious errors [36].

Radio and television fare no better. While good for broad-
casting messages, they have yet to be used broadly for col-
lection of many types of information [49]. Computing, as de-
livered by desktops and laptops has not been successful [30,
51] for developing regions. To build the complex services
that can provide value in developing regions, we must look
to systems built around mobile devices. Moreover, we must
go beyond the obscure, like SIM Toolkit [25], or operator-
controlled, like Unstructured Supplementary Service Data
(USSD).

Voice is a good modality for the illiterate, and speech-
based systems have shown promise for delivering informa-
tion [47], for creating communities of practice [44], and pro-

viding health surveillance [32]. Voice, while sometimes suc-
cessful for data collection [45], has not been shown to enable
the variety of services we wish to provide.

The most common electronic information services in de-
veloping regions are SMS-based. Examples of these include
FrontlineSMS [9] and RapidSMS [22]. The strength of these
platforms is the wide availability of SMS service and the low
cost of basic SMS phones. For systems like FrontlineSMS,
the ease of use of the platform (just a computer and a mobile
phone) has enabled wide adoption for organizations who pri-
marily use it to communicate and gather unstructured data
for short surveys, election monitoring, and even crisis re-
porting.

RapidSMS, on the other hand, is designed for larger scale
deployments and is used primarily for structured data. With
a structured SMS, users must compose commands following
a particular syntax. For example, to report name, age and
gender, you might send ‘f:John l:Doe a:14 g:m’. These mes-
sage structures are hard to enter consistently and so orga-
nizations must contend with similar data cleaning problems
as systems using unstructured messages. To accommodate
longer sessions, some systems use a “question at a time” pro-
tocol but these can lead to lengthy message exchanges.

Despite the popularity of SMS-based tools, SMS is unreli-
able and expensive as a transport mechanism. Messages can
arrive late (or never arrive) and the cost of sending 1Mb over
SMS is over 3600 times more expensive than GPRS [26]. Ad-
ditionally, since the collected data can only be easily sent in
cleartext, there are security and privacy implications. For
organizations that need to send sensitive data, to confirm
data transmission, or to send more than a few hundred bytes
of data, SMS is simply not viable.

6. DISCUSSION
In this section, we discuss ODK in the context of four

implementations. Our aim is to capture the factors that go
into choosing ODK and the consequences of that decision.
We use a holistic qualitative approach, and focus on what, if
anything, ODK enabled or enhanced for these implementers.

6.1 Methodology
We selected four organizations from our users’ forum who

were familiar with existing systems and had used ODK for
some time. All four organizations had an implementation
team with a software developer and a project manager.

We emailed each team with five open-ended questions de-
signed to understand how they were using ODK, the alter-
natives they considered, their current usage, and the impact
of the platform on their work. We asked each team to work
together on the responses and send their combined answers
back via email. The questions, answers and emails were in
English.

We provide varying levels of assistance to all our users
and that could introduce bias in the responses. In the case of
these particular organizations, assistance included providing
five sample phones to two teams and helping train users
in the field for one team. We also fixed occasional minor
bugs when the implementation developers requested help.
After this initial support, all implementers have brought the
projects to scale without our assistance.

To further address potential bias, the surveys were sent
months after any assistance and implementers were asked to
be “accurate, objective, clear and verbose” and to “describe

why [ODK] has been better or worse than the alternatives.”

6.2 Berkeley Human Rights Center

Figure 6: An enumerator collects data in the Cen-
tral African Republic for the University of Berke-
ley’s Human Rights Center.

The Berkeley Human Rights Center (HRC) [11] uses inno-
vative technologies and scientific methods to investigate war
crimes and human rights abuses. They develop policy mea-
sures to protect vulnerable populations and train the next
generation of human rights defenders. The HRC uses ODK
to conduct field research (shown in Figure 6) in developing
nations by performing large scale population surveys in ar-
eas vulnerable to post-conflict issues of accountability and
transitional justice.

The environments in which the HRC uses ODK are quite
demanding. “Each survey can be 300 questions, and we do
2000 to 3000 surveys in 1-2 months. It is extremely intensive
and requires speed and accuracy.”

The HRC had traditionally used paper in their survey
work primarily because “no programming [is] required, so
it’s easy to implement for non-technical people.” The choice
to switch to ODK was driven primarily by cost, usability,
latency, errors and scale. That is, “there is a point where
the money saved on paper production and shipping, and the
money saved by removing the steps of data-entry by hand,
balances everything out...the increase in data accuracy is an
argument for spending the money.”

Because enumerators must be quickly trained when HRC
starts a project in a new locale, usability was also a concern.
“It is relatively easy to train enumerators using ODK as the
interface is highly usable, even for people who have little or
no computer experience.” Decreasing training costs is an
important consideration in overall system costs especially
for organizations with high employee turnover rates.

Evaluating data as it was collected was also important.
“We have found that the ability to synchronize and analyze
data daily, as it comes in significantly improves the quality
of the data. We can look for errors in methodology from
data...and make corrections in the methodology so that fur-
ther data is clean.”. The HRC team plots the GPS locations
of an individual enumerator to ensure sampling points are
spaced correctly. Start and end times of surveys are also
tracked to manage fraud.

HRC considered EpiSurveyor and VisualCE before choos-
ing ODK. EpiSurveyor was not free for the number of sur-
veys needed, did not work on a wide variety of devices, and
(at the time) had an unreliable form builder. VisualCE had
database synchronization, but the development environment
was considered awkward for larger surveys.

HRC also noted that, the ODK development community
“is very active and friendly. Finding fixes for mutual prob-
lems and sharing development for common benefit.” Indeed,
the HRC has played an important role in the community
– localizing ODK Collect into French, providing training
guides and the Kobo PostProcessor [16], an ODK-compatible
tool to process data in the field.

6.3 D-Tree International

Figure 7: A sample prompt from an ODK Collect
rendered medical flowsheet from D-Tree Interna-
tional. Such flowsheets can provide automated di-
agnoses.

D-Tree International [5] is an organization that aims to
reduce the high rates of illness and death from preventable
and treatable diseases worldwide. Their approach centers
on the development and use of treatment protocols for the
most commonly diagnosed illnesses based on best field prac-
tices. The protocols are programmed into inexpensive PDAs
and mobile phones for use by health workers in both clinical

and community settings. D-Tree is using ODK to trial an
electronic version of the WHO’s Integrated Management of
Childhood Illness [12] protocol in Tanzania (shown in Fig-
ure 7). They also plan on using ODK as part of a maternal
health system.

For D-Tree, maintaining compatibility with their existing
systems was important. “ODK was the obvious platform to
use since it is able to execute precisely the same XForms that
we’d been using on cheaper phones.”

When asked to compare ODK to their existing J2ME and
PDA systems, ODK had “quick and easy user interaction”
as a positive trait. In one case, a clinical officer was more re-
sponsive to the health protocol once he had used it on ODK.
This is important because if the treatment protocol is un-
pleasant to use, it will be ignored and likely result in worse
patient outcomes. D-Tree noted there was “a bit of techno-
phobia by users when it comes to the higher end phones that
ODK runs on.”

Despite these constraints, the switch to ODK was driven
by an ability to “integrate and test easily features such as
photos, GPS with a few lines of code...J2ME had its limita-
tions.” Some of these limitations are best explained by how
D-Tree is using ODK for the cases that other platforms and
devices do not support.

D-Tree has created a peer-to-peer application [2] that syn-
chronizes patient information across phones and servers. They
have exposed this data so that any application (including
ODK) can programmatically create, read, update or delete
patient data. ODK Collect can submit data to this on-phone
medical record system and have the changes propagate to
other phones via Bluetooth or WiFi. This functionality en-
ables a portable patient record system that works across a
variety of connectivity scenarios found in developing regions.

As D-Tree notes, “features sometimes trump cost, one has
to make the choice between enhanced UI vs. minimal UI, ad-
vanced features vs. basic functionality, in our case we needed
to get more out of the phone and Android/ODK allowed us
to do that.”

6.4 Johns Hopkins Center for Clinical Global
Health Education

eMOCHA [6] is a free open-source application, developed
by the Johns Hopkins Center for Clinical Global Health Ed-
ucation (JHCCGHE) [15]. eMOCHA is designed to support
JHCCGHE’s mission by improving health provider commu-
nication and education, as well as patient care in developing
regions. eMOCHA does this through a mobile and server
component.

For the mobile component, JHCCGHE chose to use ODK
and customized the user interface. JHCCGHE’s explains
that ODK “is used for patient data gathering, and to give an
exam after watching a video course on the phone, to make
sure the user understood the content.” In the latter case,
eMOCHA launches ODK Collect to gather feedback after a
video session as shown in Figure 8.

eMOCHA’s server collects, analyzes and displays the col-
lected clinical information and statistics. The mobile com-
ponent gathers clinical data, provides training through video
and distance learning, and enables messaging and consulta-
tion between local and remote clinicians.

When asked about alternatives they considered, JHCCGHE
stated that their “goal is not data gathering itself, but the
creation of a tool for health workers. We were interested in

Figure 8: The eMOCHA application provides video-
based training for health workers. After each video,
eMOCHA launches ODK Collect to test users.

the Android platform and at the time we did not find other
open source alternatives we could integrate. We did consider
creating a form system ourselves. We chose to go for ODK
to save development time and follow the XForms standard,
even if we would lose freedom and flexibility.”

Asked to explain the loss of freedom, JHCCGHE reported
that “there is always this dilemma, should I build it my-
self, or use this existing software/framework. What will
take more time? Will the existing software do everything
I want?”. JHCCGHE also noted that ODK did not sup-
port encryption of potentially sensitive patient data. This is
functionality JHCCGHE has recently added to their version
of ODK Collect.

JHCCGHE was an early adopter of ODK and had to make
this decision early on. “At the beginning sending data to a
server was not implemented, and later it only synchronized
with Google App Engine, so we built our own [server] based
on PHP.” ODK’s use of standard communication interfaces
allowed them to easily connect their server to client devices
running ODK Collect. This server is itself available to the
larger community as an alternative module to Aggregate.

6.5 Academic Model for the Prevention and
Treatment of HIV

The Academic Model for the Prevention and Treatment
of HIV (AMPATH) [13] is the one of the largest HIV treat-
ment programs in sub-Saharan Africa and is Kenya’s most
comprehensive initiative to combat the virus.

ODK is being used for the USAID-AMPATH home-based
HIV counseling and testing (HCT) program. This program
aims to reach two million individuals in the program’s catch-

ment area, with the following specific goals: (a) counsel and
test all eligible individuals for HIV; (b) identify pregnant
women not in ante-natal care; (c) identify orphaned and
vulnerable children; (d) determine immunization status for
children; (e) identify people at high risk for TB infection
and collect sputum samples; and (f) refer individuals to ap-
propriate follow-ups. These goals are managed primarily
through OpenMRS [18], an open-source medical record sys-
tem.

Figure 9: A HIV counselor from AMPATH in Kenya
scans a patient’s barcode in ODK Collect before
sending data to the OpenMRS medical record sys-
tem.

AMPATH had extensive previous experience with data
collection. “Before using ODK, we had created data col-
lection functionality on Palm TX devices using Pendragon
Forms. GPS information was collected using eTrex devices,
and these devices were connected via cable to the Palm de-
vice.”

In replacing their existing system, an important consider-
ation was the ability to transfer data collected during HCT
into their medical records system. ODK supported adding
that functionality whereas Pendragon Forms did not. The
move to ODK also added barcode scanning of AMPATH
patient ID cards to minimize error (shown in Figure 9) and
solved problems with the “clumsy and unreliable” external
GPS system. Training was thus “much easier” on ODK and
the data captured suggests fewer data entry errors. AM-
PATH attributed this to the logic support built into the
ODK implementation.

Overall, AMPATH found ODK more cost-effective than
Pendragon Forms for both software and hardware require-
ments. They have added their own user interface elements
to speed up data entry and are moving to use ODK to
help manage workflow using alerts and reminders. They
note that “this is dependent on other infrastructure outside
ODK...the possibilities are however limitless.”

6.6 Summary
Based on the feedback from four implementers, ODK has

demonstrated it can enhance information services in a va-
riety of low-resource environments. Our users report ODK
is easier to use, more capable, more cost-effective, and more
accurate than the alternatives they considered.

For HRC, ODK’s cost of deployment and short timelines
drove much of their decision. For D-Tree, the impetus was
backwards compatibility paired with ease of use and develop-
ment. AMPATH needed to integrate with a medical record
system and intuitive user interface was key, whereas JHC-
CGHE focused on integration with a larger set of server and
mobile tools.

In all four cases, many of the design goals of ODK enabled
each organization to use or modify ODK Collect and submit
data to their preferred server solution.

Beyond the implementers evaluated in this paper, there
are examples of others building on our design choices by
using Aggregate as a gateway to other web servers [24], using
their application designers to build services for ODK [23],
adding web-based ODK-compatible clients [21], and creating
on-phone analysis tools (shown in Figure 10).

Figure 10: CKW Search and CKW Pulse from
Grameen AppLab in Uganda integrates with ODK
and Salesforce.com to provide real-time monitoring
and evaluation [10].

Although ODK can be the solution in some scenarios,
there are tradeoffs that must be considered. Both AMPATH
and researchers at Columbia University using ODK noted
problems with short battery life, occasionally slow GPS re-
sponse, and lack of non-Western languages within the An-
droid OS user interface itself [40].

There are also financial constraints that could be prob-
lematic. For example, the relatively higher cost of smart
phones ($350 vs. $100) for somewhat less capable phones has
been cited as a reason organizations are wary to begin using
ODK. However, many ODK implementers have anecdotally
described cost savings from less training and transportation
as amply covering the difference in capital costs. We are
currently running ongoing studies with these organizations
to further understand the underlying tradeoffs.

7. CONCLUSION
Open Data Kit provides organizations with a new way

to build information services for developing regions. The
modular, extensible and open-source design allows users to
pick and choose the tools best suited for their specific de-
ployments. We have detailed how ODK differs from previ-
ous work, described the current set of tools, and presented
evaluations of four ongoing deployments. Finally, we have

discussed how design decisions made in the system architec-
ture of ODK enable a large and varied set of applications
for developing regions.

Open Data Kit tools are freely available for download at
http://opendatakit.org.

8. ACKNOWLEDGMENTS
The authors thank the members of the Open Data Kit

community, especially Academic Model for the Prevention
and Treatment of HIV (AMPATH), D-Tree International
(D-Tree), Berkeley Human Rights Center (HRC), Johns Hop-
kins Center for Clinical Global Health Education (JHC-
CGHE), Dimagi and the University of Washington’s Change
group for their ongoing support and use of our tools. This
work is supported by Google.org and Google.com through
their extensive and continuing financial and technical assis-
tance.

9. REFERENCES
[1] Pendragon Forms case studies.

http://pendragonsoftware.com/casestudy.

[2] Android OpenMRS, July 2010.
https://bitbucket.org/routen/androidopenmrs/overview.

[3] CommCare, July 2010. http://dimagi.com/commcare.

[4] CyberTracker, July 2010. http://cybertracker.co.za.

[5] D-Tree International, July 2010.
http://www.www.d-tree.org.

[6] eMOCHA, July 2010. http://emocha.org.

[7] Epihandy, July 2010. http://epihandy.org.

[8] EpiSurveyor, July 2010. http://datadyne.org.

[9] FrontlineSMS, July 2010. http://frontlinesms.com.

[10] Grameen Community Knowledge Worker, July 2010.
http://www.grameenfoundation.applab.org/ckw.

[11] Human Rights Center, July 2010.
http://hrc.berkeley.edu.

[12] Integrated management of childhood illness, July
2010. http://goo.gl/7M9q6.

[13] IU-Kenya Partnership/AMPATH, July 2010.
http://www.iukenya.org/hiv.aids.html.

[14] JavaRosa, July 2010. http://bitbucket.org/javarosa.

[15] Johns Hopkins Center for Clinical Global Health
Education, July 2010.
http://www.ccghe.jhmi.edu/ccg/index.asp.

[16] KoBo, July 2010.
http://sites.google.com/site/kobohrc.

[17] Open Data Kit, July 2010. http://opendatakit.org.

[18] OpenMRS, July 2010. http://openmrs.org.

[19] OpenRosa Consortium, July 2010.
http://openrosa.org.

[20] Pendragon Forms, July 2010.
http://pendragonsoftware.com.

[21] PurcForms, July 2010.
http://code.google.com/p/purcforms.

[22] RapidSMS, July 2010. http://rapidsms.org.

[23] RapidSMS XForms, July 2010.
http://nyaruka.github.com/rapidsms-xforms-builder.

[24] Rhiza Insight Feature Overview: Open Data Kit
Integration, July 2010.
http://www.youtube.com/watch?v=mVxRoKZSyOg.

[25] SIM toolkit, July 2010.
http://www.bladox.cz/devel-docs/gen stk.html.

[26] Vodacom Tanzania, July 2010. http://vodacom.co.tz.

[27] Voice extensible markup language, July 2010.
http://w3.org/TR/voicexml20.

[28] XForms 1.1, July 2010. http://w3.org/TR/xforms.

[29] J. Blaya and H. S. Fraser. Development,
implementation and preliminary study of a PDA-based
bacteriology collection system. In American Medical
Informatics Association Annual Symposium, 2006.

[30] E. Brewer, M. Demmer, M. Ho, R. Honicky, J. Pal,
M. Plauch, and S. Surana. The challenges of
technology research for developing regions. In IEEE
Pervasive Computing, volume 5, pages 15–23, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[31] K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and
T. S. Parikh. Usher: Improving data quality with
dynamic forms. In International Conference on Data
Engineering (ICDE), 2010.

[32] W. H. Curioso, B. T. Karras, P. E. Campos,
C. Buend́ıa, K. K. Holmes, and A. M. Kimball. Design
and implementation of Cell-PREVEN: A real-time
surveillance system for adverse events using cell
phones in Peru. In American Medical Informatics
Association Annual Symposium, 2005.

[33] B. DeRenzi, N. Lesh, T. Parikh, C. Sims, W. Maokla,
M. Chemba, Y. Hamisi, D. S Hellenberg, M. Mitchell,
and G. Borriello. e-IMCI: Improving pediatric health
care in low-income countries. In CHI ’08: Proceeding
of the 26th Annual SIGCHI Conference on Human
Factors in Computing systems, pages 753–762, New
York, NY, USA, 2008. ACM.

[34] D. Forster, R. H. Behrens, H. Campbell, , and
P. Byass. Evaluation of a computerized field data
collection system for health surveys. In Bulletin of the
World Health Organization, 1991.

[35] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison,
and J. A. Landay. MyExperience: A system for in situ
tracing and capturing of user feedback on mobile
phones. In MobiSys ’07: Proceedings of the 5th
International Conference on Mobile Systems,
Applications and Services, pages 57–70, New York,
NY, USA, 2007. ACM.

[36] R. M. Groves, F. J. F. Jr., M. P. Couper, J. M.
Lepkowski, E. Singer, and R. Tourangeau. Survey
Methodology. Wiley-Interscience, 2004.

[37] T. Groves. SatelLife: Getting relevant information to
the developing world. In BMJ, 1996.

[38] International Telecommunication Union. ICT
statistics, July 2010.
http://itu.int/ITU-D/ict/statistics.

[39] Inveneo. ICT project and sustainability primer, July
2010. http://inveneo.org/download/Inveneo ICT-
Sustainability Primer0809.pdf.

[40] F. Jeffrey-Coker, M. Basinger, and V. Modi. Open
Data Kit: Implications for the Use of Smartphone
Software Technology for Questionnaire Studies in
International Development, March 2010.
http://modi.mech.columbia.edu/2010/04/open-data-
kit.

[41] P. Meier and J. Leaning. Applying technology to crisis

mapping and early warning in humanitarian settings,
September 2009. http://goo.gl/iXpui.

[42] T. S. Parikh. Designing an Architecture for Delivering
Mobile Information Services to the Rural Developing
World. PhD thesis, University of Washington, 2007.

[43] T. S. Parikh, P. Javid, S. K., K. Ghosh, and
K. Toyama. Mobile phones and paper documents:
Evaluating a new approach for capturing microfinance
data in rural India. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing
systems, pages 551–560, New York, NY, USA, 2006.
ACM.

[44] N. Patel, D. Chittamuru, A. Jain, P. Dave, and T. S.
Parikh. Avaaj Otalo - A field study of an interactive
voice forum for small farmers in rural India. In CHI
2010: Proceedings of the 27th International Conference
on Human Factors in Computing ystems. ACM, 2010.

[45] S. Patnaik, E. Brunskill, and W. Thies. Evaluating the
accuracy of data collection on mobile phones: A study
of forms, SMS, and voice. In International Conference
on Information and Communication Technologies and
Development. IEEE/ACM, April 2009.

[46] Y. Schwartzman and T. S. Parikh. Using
CAM-equipped mobile phones for procurement and
quality control at a rural coffee cooperative. In MobEA
V: Mobile Web in the Developing World, May 2007.

[47] J. Sherwani, S. Palijo, S. Mirza, T. Ahmed, N. Ali,
and R. Rosenfeld. Speech vs. touch-tone: Telephony
interfaces for information access by low literate users.
In International Conference on Information and
Communication Technologies and Development.
IEEE/ACM, April 2009.

[48] K. Shirima, O. Mukasa, J. A. Schellenberg, F. Manzi,
D. John, A. Mushi, M. Mrisho, M. Tanner,
H. Mshinda, and D. Schellenberg. The use of personal
digital assistants for data entry at the point of
collection in a large household survey in southern
Tanzania. In Emerging Themes in Epidemiology,
volume 4, pages 5+, June 2007.
http://dx.doi.org/10.1186/1742-7622-4-5.

[49] S. R. Sterling, J. O’Brien, and J. K. Bennett.
Advancement through interactive radio. In
Information Systems Frontiers, volume 11, pages
145–154, Hingham, MA, USA, 2009. Kluwer Academic
Publishers.

[50] K. Toyama. Ten myths of ICT4D, November 2009.
http://research.microsoft.com/en-
us/um/people/toyama/talks.

[51] R. Veeraraghavan, N. Yasodhar, and K. Toyama.
Warana unwired: Replacing PCs with mobile phones
in a rural sugarcane cooperative. In International
Conference on Information and Communication
Technologies and Development. IEEE/ACM, 2007.

