
U
se

fu
l

C
om

pu
te

r
Se

cu
ri

ty

MAY/JUNE 2008	 1089-7801/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society� 13

A Brief Introduction
to Usable Security

Bryan D. Payne
and W. Keith Edwards
Georgia Institute of Technology

Researchers have studied usable computer security for more than 20 years,

and developers have created numerous security interfaces. Here, the authors

examine research in this space, starting with a historical look at papers that

address two consistent problems: user authentication and email encryption.

Drawing from successes and failures within these areas, they study several

security systems to determine how important design is to usable security.

Their discussion offers guidelines for future system design.

N ewcomers to usable security re-
search might find themselves
overwhelmed by how much in-

formation currently exists. Similarly,
it can be difficult for people to quickly
distill “lessons learned” from this re-
search that they can apply to their own
areas. Here, rather than give a compre-
hensive study of all the security work
from the past 20 years, we’ve identified
a few select representative areas.

Two areas receiving significant at-
tention from the usable security com-
munity are user authentication and
email encryption, so we look at two
case studies that provide insight into
these areas. Design issues also play a
significant role in usable security, and
we examine in particular the emergence

of design guidelines, exploring what
they say about usable security re-
search by looking at several success-
ful and unsuccessful design efforts.
Finally, some debate exists over the
role of interface changes versus more
structural solutions in providing us-
able security; we look at how refram-
ing security problems can sometimes
lead to better usability.

Case Studies
These case studies provide an over-
view of past research in passwords and
authentication, and email encryption.
Researchers have yet to solve either
of these problems, so this work repre-
sents only the first part of a continu-
ing story. The specific research that we

Useful Computer Security

14 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

discuss can serve as a starting point for anyone
interested in learning more about this field.

Passwords and Authentication
The problem of how users authenticate to sys-
tems, particularly using passwords, is one of the
oldest and most heavily studied topics in usable
security. Passwords present an innate tension
between usability (which is aided by having
short, easily memorable passwords and reus-
ing them across multiple systems) and security
(which dictates longer, more diverse passwords
that are difficult to “crack,” as well as distinct
passwords for each system). This tension isn’t
new, but it’s becoming worse as people have
more accounts and computers grow ever fast-
er (thus, cracking passwords becomes easier).
Guidelines for password selection focus largely
on security rather than usability. In 1979, for
example, Robert Morris and Ken Thompson1
discussed a technique for having users choose
less predictable passwords:

The password entry program was modified so as to
urge the user to use more obscure passwords. If the
user enters an alphabetic password (all upper-case
or all lower-case) shorter than six characters, or a
password from a larger character set shorter than
five characters, then the program asks him to enter a
longer password.

Twenty-six years later, current suggestions for
choosing passwords are as follows:2

A secure password should be 8 characters or lon-
ger, random, with upper-case characters, lower-case
characters, digits, and special characters.

Although these suggestions might, in fact, im-
prove security, they reduce usability — and en-
courage counterproductive behaviors such as
simply writing passwords down in plain sight.

Much usability research reframes the pass-
word problem more generally as a user-authen-
tication one. Specifically, users should have no
reason to present a password before accessing
some resource: the real goal is to validate that
they access only the resources they have permis-
sions to use. System administrators can achieve
this through numerous methods, including
passwords, passphrases, personal identification
numbers (PINs), graphical authentication, bio-
metrics, and secure tokens. Research over the

past 25 years has investigated many techniques
for user authentication in an effort to strike a
better balance between usability and security.

Passphrases. The first attempt to design a user-
authentication system around usability came
from Sigmund Porter’s work on passphrases in
1982.3 Porter argued that passphrases — which
use sequences of words to authenticate users
— are more usable because they’re more memo-
rable, especially compared to system-generated
passwords. Additionally, because passphrases
are longer than passwords, they offer a larger
key space and thus more security.

Pass-algorithms. In 1984, James Haskett acknowl-
edged the password memorability problem and
developed a technique known as pass-­algorithms.4
A simple example suggests a pass-algorithm in
which the user must type in the next letter in
the alphabet for each letter in a prompt. Thus, the
password for the prompt “BEL” is “CFM.” One in-
teresting property of this system is that the pass-
word would effectively change for each login
while the pass-algorithm remained the same.

User-friendly password advice. At nearly the
same time as Haskett introduced his pass-
algorithm technique, Ben Barton and Marthalee
Barton addressed the need for a user-friendly
password system5 by providing different ways
to aid in password selection. The techniques
they discussed included ways to convert a sen-
tence or expression to a reasonably strong pass-
word (for example, “One for the money” becomes
“14MUNNY” or “I Love Paris in the Springtime”
becomes “ILPITST”) that people still use today.

Cognitive passwords. Another method for ad-
dressing the problems inherent in picking pass-
words that are both easy to remember and hard
to guess is cognitive passwords.6 The idea be-
hind this technique is to give the user a series
of questions that are easier for them to answer
than for others. An empirical study verified
that this technique generally works; however,
people close to the user — especially a spouse
— could successfully answer many of the ques-
tions. Thus, this technique doesn’t appear viable
for high-security systems.

Passfaces and graphical passwords. In 2000,
graphical passwords quickly became a hot re-

MAY/JUNE 2008� 15

A Brief Introduction to Usable Security

search area. Three different groups published
variations on the theme of using images to sup-
port the authentication process. Sacha Brost-
off and Angela Sasse evaluated the Passfaces
technique, in which a user selects an image of
a person’s face known to them from a grid of
nine faces (see Figure 1a).7 The user repeats this
four times with different faces to complete the
authentication process. Ian Jermyn and his col-
leagues developed a graphical password tech-
nique in which the password is essentially a
pencil-style drawing (see Figure 1b).8 Finally, the
Deja Vu technique9 is very similar to Passfaces,
except that it uses various images, rather than
just faces. Each of these graphical techniques
compared favorably to standard passwords from
a user’s perspective, but later work revealed var-
ious security problems with them.10,11

PassPoints. Finally, in 2005, Susan Wiedenbeck
and her colleagues presented a variation on us-
ing images as passwords called PassPoints.2
Here, users select from different regions within
a single image to create a password, as Figure
2 shows. This initial work focused on creating
an implementation that was acceptable from the
viewpoint of user-selection tolerance regions.
Specifically, the study focused on determining
how many pixels surrounding an initial user
click must be included in the region used for a
valid password. Obviously, a smaller tolerance
region leads to better security but can negative-
ly affect the application’s usability.

Email Encryption
The computer security community has long
understood that email is not a secure medium.
However, this understanding hasn’t stopped us-
ers from treating it as if it were secure. The obvi-
ous solution seems to be email encryption, but
although the technology is available, most people
don’t take this precaution. Here, we look at email
encryption’s history to see why usability is an
important factor in this feature’s acceptance.

Privacy-Enhanced Mail. In 1985, the Internet Ar-
chitecture Board (IAB) began work on Privacy-
Enhanced Mail (PEM).12 Unfortunately, PEM
never caught on, in large part because it lacked
flexibility. Its most serious problem, however, was
that it required all entities worldwide to trust a
single certificate authority (CA) infrastructure,13
leading to “organizational usability” problems.

So, although many PEM implementations exist-
ed, it never achieved wide deployment.14

Pretty Good Privacy. In 1991, Phil Zimmer-
mann released an email encryption scheme
known as Pretty Good Privacy (PGP; www.phil
zimmermann.com). It quickly became popular,
and by 1996, Bruce Schneier suggested that
PGP was “the closest you’re likely to get to mili-
tary-grade encryption.”15 Today, PGP is both a
product and an open standard, implemented in
various projects including PGP (www.pgp.com),
OpenPGP, and GnuPG (www.gnupg.org). It’s so
widely used in large part because it employs a
decentralized trust model.13 Instead of using a
centralized CA, PGP introduced the idea of a
“web of trust” in which each participant can
validate the other participants’ trust. Although
this model mimics typical human interaction, it
doesn’t scale well. Thus, PGP seems limited to
smaller user communities.

1

1

6
2

3

4

2

5

1

2 3

4

3 4

(b)(a)

Figure 1. Graphical passwords. (a) The Passfaces authentication
system7 uses a face grid for user authentication, whereas (b)
another technique uses a pencil drawing as input.8

Figure 2. The PassPoints system. Users click on
regions to create a graphical password. Selected
regions indicate where users have clicked.2

Useful Computer Security

16 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

S/MIME. Whereas PGP is available as a plug-in
to many email applications, vendors already
include Secure Multipurpose Internet Mail Ex-
tensions (S/MIME) in nearly every major email
application. S/MIME is a set of protocols for
securely sending messages encoded using the
MIME format. Security in S/MIME comes from
the Public Key Cryptography Standard (PKCS)
#7, an RSA Data Security standard. S/MIME
takes the middle ground between PEM and PGP
in establishing its trust model: although a CA is
required, you can use any CA.

Even with email encryption’s availability,
and the fact that most people believe securing
email communications to be important, many
users don’t employ PGP or S/MIME.16 Two im-
portant empirical studies have shown that us-
ability plays a major role in this situation.

Email encryption usability studies. In 1999,
Alma Whitten and Doug Tygar released a paper
entitled “Why Johnny Can’t Encrypt: A Usabil-
ity Evaluation of PGP 5.0.”17 It received consid-
erable attention because it verified the usability
problems inherent in security interfaces. The
authors’ results revealed numerous difficulties
users face with PGP:

Several test participants emailed secrets
without encryption; such errors are irrevers-
ible and thus very serious.
Participants chose passphrases that were
similar to standard passwords (8 to 10 char-
acters, no spaces). This mistake significantly
decreases the key space of the user pass-
phrase, making it easier for an adversary to
attack the system.
Although test participants were educated
and experienced email users, only a third
could correctly sign and encrypt a message
within 90 minutes.

In short, this study showed that most people
couldn’t effectively use PGP due to usability
problems, rather than simple technical fail-
ings. Whitten and Tygar concluded that ge-
neric usability standards aren’t necessarily
applicable to security applications and sug-
gested a need for new guidelines for creating
usable security applications.

Six years later, Simpson Garfinkel and Rob-
ert Miller repeated this study,18 but focused
on S/MIME with key continuity management

•

•

•

(KCM) instead of PGP. Although many email
clients natively support S/MIME, certificate ac-
quisition is a burdensome process and is likely
why more people don’t use it. KCM addresses
this problem by automatically creating a pub-
lic-private key pair whenever a user creates
a new email identity. The results showed that
KCM was effective at stopping impersonation
attacks, but not as useful against new identity
(that is, phishing) attacks. In general, KCM was
an improvement over current email encryp-
tion techniques, but it wasn’t a perfect solution,
highlighting the continuing problems in this
application domain.

Usable Security Design
Passwords, authentication, and email encryp-
tion are considered “canonical” focus areas for
usable security. Another significant question
is what makes a new design better — or worse
— from a usable security perspective. First let’s
look at design guidelines that are intended to
improve security-oriented design.

Design Guidelines
Although several researchers have looked at
usable security design, Kai-Ping Yee’s work in
2002 is among the most cited.19 His guidelines
focus on addressing valid and nontrivial con-
cerns specific to usable security design; this list
is an updated version from Yee’s Web site:20

Path of least resistance. Match the most
comfortable way to do tasks with the least
granting of authority.
Active authorization. Grant authority to oth-
ers in accordance with user actions indicat-
ing consent.
Revocability. Offer the user ways to re-
duce others’ authority to access the user’s
resources.
Visibility. Maintain accurate awareness of
others’ authority as relevant to user decisions.
Self-awareness. Maintain accurate aware-
ness of the user’s own authority to access
resources.
Trusted path. Protect the user’s channels to
agents that manipulate authority on the us-
er’s behalf.
Expressiveness. Enable the user to express
safe security policies in terms that fit the
user’s task.
Relevant boundaries. Draw distinctions among

•

•

•

•

•

•

•

•

MAY/JUNE 2008� 17

A Brief Introduction to Usable Security

objects and actions along boundaries rel-
evant to the task.
Identifiability. Present objects and actions
using distinguishable, truthful appearances.
Foresight. Indicate clearly the consequences of
decisions that the user is expected to make.

As Garfinkel states, “There are of course
no set of rules, principles or formalisms that,
when followed, are guaranteed to produce us-
able computer systems. If such rules existed, we
would almost certainly all be using them, and
the usability problem would be solved.”16 Yet,
even though these guidelines don’t address and
solve every issue, they can help remind design-
ers of good practices. To that end, they can be
very useful.

Let’s now examine successful and flawed
designs — for each case, we can refer back to
Yee’s guidelines to see if a correlation exists
between adherence to these guidelines and suc-
cessful design.

Successful Designs
Before looking at specific examples, we first
consider what makes a design successful. Here,
we’re most interested in user acceptance and
not business considerations or market pressures.
With this in mind, we can consider the follow-
ing examples to be successful designs because
they were viewed favorably in user testing and
showed significant improvement in users’ ability
to achieve appropriate security levels. The first
example we review is an improvement to the file
permissions interface in Microsoft Windows XP.
The second is a system that enables rapid setup
and enrollment in a secure wireless network.

Salmon file permissions interface. Correctly
setting file permissions in an enterprise en-
vironment is a difficult task. First, users must
understand the different groups and the impli-
cations of assigning permissions to each group.
Second, they must understand numerous file
permission types, such as full control, modify,
read-and-execute, read, write, and special per-
missions. (In Windows XP, these are the standard
permission options — clicking on the Advanced
tab adds even more complexity.) Finally, com-
plex interactions can create unexpected end re-
sults when setting permissions.

Robert Reeder and Roy Maxion developed
Salmon to replace the traditional Windows XP

•

•

file permissions interface (see Figure 3).21 Re-
sults from their user study show that Salmon
delivers a four-fold increase in accuracy and a
94 percent reduction in errors committed. The
primary design concept Salmon uses is anchor-
based subgoaling (ABS), “a principle for ensuring
that a user interface provides all the informa-
tion a user will need to complete the tasks for
which the interface is intended, and provides
such information in a clear and accurate dis-
play that the user will notice.” When it comes
to setting file permissions, the effective permis-
sions are difficult to determine in Windows XP
because the native interface requires the user to
drill down through the Advanced button to find
them. Salmon addresses this problem by mak-
ing relevant information more readily available,
letting users make informed decisions about file
permission settings.

Salmon successfully addresses all but one
of Yee’s design guidelines: by providing all the
relevant access-control information in a single
user interface, it has visibility, self-awareness,
revocability, and foresight. Given that access
controls are associated with a distinct object,
Salmon has relevant boundaries and identifi-
ability. The access-control granularity — an
underlying feature of the operating system that
Salmon didn’t hinder — provides for expres-
siveness and active authorization. Finally, the
reduction in human error shows that Salmon

Figure 3. The Salmon interface. Salmon provides users with
all relevant information in a single window, letting them make
informed security decisions.21

Useful Computer Security

18 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

achieves a path of least resistance. Salmon
doesn’t offer a trusted path because users don’t
get assurance that the system itself actually
carries out their actions.

Salmon is clearly a successful example of
how simply changing an interface’s design can
result in better user security. Next, we consid-
er a system that required more than interface
changes to reach its goals.

Network-in-a-Box. From a security expert view-
point, wireless network security has suffered
from many problems in recent years. The initial
form of security available on 802.11b networks,
known as Wired Equivalent Privacy (WEP),
had many vulnerabilities.22,23 As subsequent
standards improved wireless networks’ securi-
ty posture, it became increasingly difficult for

average users to set up such networks properly.
Today, home users attempting to set up a secure
wireless network need to understand numerous
security standards and protocols as well as the
interactions between them. Seeing this situa-
tion, Dirk Balfanz and his colleagues designed
a system called Network-in-a-Box (NiaB)24 that
reframes the problem away from setting keys
and acquiring certificates and toward the more
fundamental task of getting on a wireless net-
work. Thus, NiaB uses a gesture-based user in-
terface in which users point a wireless device
at an access point to initiate a secure connec-
tion between them; this initial exchange passes
SHA-1 digests of 802.1x certificates and the
wireless network name over an infrared con-
nection. The remainder of the connection setup
occurs over the 802.11a/b/g wireless link. User
studies that the NiaB paper discusses confirm
that this idea is viable. Users were able to set up
the network roughly 10 times faster (51 seconds
versus 9 minutes 39 seconds for a commercial
AP), and they had higher confidence and satis-
faction with the process.

Like Salmon, NiaB closely adheres to Yee’s
design guidelines. Because it grants access to the

network on a per-user basis, it has revocability,
visibility, self-awareness, relevant boundaries,
and foresight. The gesture-based setup mecha-
nism provides a path of least resistance, active
authorization, identifiability, and foresight. A
wireless access point simply provides network
access, and, because NiaB can do this on a per-
user basis, it has expressiveness. However, as
with Salmon, NiaB doesn’t offer a trusted path
because the initial key exchange is performed
over an unsecured infrared connection.

Both NiaB and Salmon successfully im-
proved the user experience and achieved a more
secure system configuration. However, Salmon
provided a new user interface, whereas NiaB
provided a new system architecture with many
modifications to existing protocols.

Flawed Designs
The difference between a poor interface and a
good interface can influence users’ ability to
perform tasks securely. Here, we consider two
designs that didn’t promote sound security deci-
sions, as shown via user studies (which doesn’t
mean these designs are complete failures, only
that their usability properties might lead to bad
security decision making).

Kazaa. In 2003, Nathan Good and Aaron
Krekelberg performed a user study on the Kazaa
interface and found some potentially serious us-
ability problems.25 Most peer-to-peer (P2P) file-
sharing applications, including Kazaa, provide
a mechanism for downloading files and shar-
ing your own. In Kazaa, the download folder is
shared by default, and users can also select ad-
ditional folders to be shared. The first problem
with this setup is that users might need to refer
to multiple locations to see all externally visible
files because the download folder isn’t displayed
on the shared folders interface. Next, the soft-
ware automatically shares any selected folder’s
subfolders. Thus, if the user chooses to store his
or her downloaded files in c:\, then the entire
c: drive is accessible to anyone on the Internet.
Finally, the Kazaa architecture lets users search
for all shared files, making it easy for someone
to look for sensitive data such as email, finan-
cial information, calendars, and address books.
Looking at this setup, we can see how users
could be mistaken about exactly what infor-
mation Kazaa is sharing from their computer.
Good and Krekelberg’s study showed that “only

The difference between a poor interface
and a good interface can influence
users’ ability to perform tasks securely.

MAY/JUNE 2008� 19

A Brief Introduction to Usable Security

2 of 12 users were able to determine correctly
the files and folders that were being shared.”
Given the ramifications of improper configura-
tion, this is a situation in which the interface
design resulted in security and privacy viola-
tions against users themselves.

Kazaa’s interface satisfies fewer of Yee’s
guidelines than the successful examples dis-
cussed previously. Kazaa does provide revo-
cability, assuming the user knows where to
click. Also, because it uses the familiar direc-
tory metaphor, it provides relevant boundaries
and identifiability. Self-awareness is provided
implicitly because a user always has access to
his or her own files. However, given that mul-
tiple locations control file access, Kazaa fails
to provide active authorization, visibility, and
foresight. And because subdirectories are auto-
matically shared, it isn’t expressive. The default
settings share files, so it also fails on the path
of least resistance guideline. Finally, there is no
trusted path.

Similar to the Windows XP file permissions
interface, it seems likely that Kazaa’s problems
could be fixed through interface changes alone.
However, the next example shows a system with
design flaws that go deeper.

Eudora PGP Encryption Plug-in. In our earlier
discussion of email encryption usability stud-
ies, we discussed a study of PGP 5.0 that specif-
ically looked at the PGP plug-in for Eudora on
the Macintosh platform.17 Although a cognitive
walkthrough of the interface suggested several
areas for improvement, many user errors that
occurred during the study seemed to be more
fundamental. In other words, users didn’t un-
derstand the various metaphors in public-key
cryptography: they encrypted with the wrong
keys, had difficulty publishing their public keys
correctly, or didn’t know if they should trust
keys from the key server. However, we might
question why users should need to understand
public-key cryptography at all. Shouldn’t send-
ing secure email be as simple as pressing the
Send button? Similar to the Kazaa interface, the
Eudora PGP plug-in only satisfies a few of Yee’s
guidelines, including active authorization, vis-
ibility, and expressiveness, because individual
emails can be encrypted for each recipient. It
also satisfies the self-awareness guideline be-
cause users can always read their own emails
and any messages received from others. How-

ever, the plug-in fails to properly address the
other guidelines — encrypting emails is much
harder than sending them unencrypted, which
violates the path of least resistance. Once sent,
users can’t revoke emails, and they don’t under-
stand cryptography metaphors enough to use
the interface correctly, breaking the relevant
boundaries, identifiability, and foresight guide-
lines. Finally, like the other designs reviewed
here, there is no trusted path.

Our previous discussion of an email encryp-
tion system with S/MIME and KCM18 showed
better results than the PGP plug-in, perhaps in
part because the system’s users didn’t need to
understand much more than how to click on
an “Encrypt” or “Sign” button before sending
the email. The design problems seen with this
plug-in seem to run deeper than the interface.
Much like the wireless security problems NiaB
addresses, the issue of email security might be
better approached when designers solve prob-
lems through reframing. We must step back
and look at email itself as the task in question,
rather than simply providing a better interface
for key management.

T he examples we’ve presented illustrate how
system design can greatly influence the us-

er’s ability to make appropriate security deci-
sions. In particular, the two successful design
cases made it easy for users to achieve their
desired security goals, whereas the two flawed
ones made it difficult for even very motivated
users to operate securely. Table 1 shows how
each design satisfies Yee’s guidelines. The de-
termination of which guidelines each design
satisfied is, to a certain extent, subjective — this
is unavoidable because Yee created the guide-
lines as general suggestions for usable security
design and didn’t necessarily intended them to
be used as a grading or scoring criteria. How-
ever, using them in this way can provide a
systematic way for us to evaluate two very dif-
ferent designs.

As we can see from the table, even though
neither Salmon nor NiaB achieved a trusted
path, they satisfied all the remaining criteria.
Certainly this explains, in part, why these de-
signs received high user satisfaction. Kazaa and
the PGP plug-in satisfied far fewer of the guide-
lines and were less successful.

More generally, however, the examples we

Useful Computer Security

20 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

chose for this article show that we can approach
security problems in multiple ways. Salmon is
an example of a successful redesign focused
purely at the user-interface level. NiaB achieves
its results not through interface tweaks but by
reframing the problem away from a security-
oriented task and toward a more general task
(getting on the wireless network).

We believe that many of the more difficult
challenges in usable security require such a
shift in thinking. In domains in which the prob-
lem is fundamentally scoped around security,
we might have no other option than to work to
improve the interface to that security task. In
others, however, simply putting a nicer coat of
paint on a fundamentally unworkable set of ab-
stractions is unlikely to lead to success. In such
cases, broadening the definition of the task to
change the assumptions involved could open up
new design opportunities.�

References
R. Morris and K. Thompson, “Password Security: A

Case History,” Comm. ACM, vol. 22, no. 11, 1979, pp.

594–597.

S. Wiedenback et al., “Authentication using Graphi-

cal Passwords: Effects of Tolerance and Image Choice,”

Proc. Symp. Usable Privacy and Security, ACM Press,

2005, pp. 1–12.

S.N.A. Porter, “A Password Extension for Improved Hu-

man Factors,” Computers & Security, vol. 1, no. 1, 1982,

pp. 54–56.

J.A. Haskett, “Pass-Algorithms: A User Validation

Scheme Based on Knowledge of Secret Algorithms,”

Comm. ACM, vol. 27, no. 8, 1984, pp. 777–781.

 B.F. Barton and M.S. Barton, “User-Friendly Password

Methods for Computer-Mediated Information Systems,”

Computers & Security, vol. 3, no. 3, 1984, pp. 186–195.

1.

2.

3.

4.

5.

M. Zviran and W.J. Haga, “Cognitive Passwords: The

Key to Easy Access Control,” Computers & Security,

vol. 9, no. 8, 1990, pp. 723–736.

S. Brostoff and A.M. Sasse, “Are Passfaces More Us-

able than Passwords? A Field Trial Investigation,” Proc.

Human-Computer Interactions (CHI 00), ACM Press,

2000, pp. 405–424.

I. Jermyn et al., “The Design and Analysis of Graphical

Passwords,” Proc. 9th Usenix Security Symp., Usenix

Assoc., 2000, pp. 1–14.

R. Dhamija and A. Perrig, “Deja Vu: A User Study Us-

ing Images for Authentication,” Proc. 9th Usenix Secu-­

rity Symp.,” Usenix Assoc., 2000, pp. 45–58.

D. Davis, F. Monrose, and M.K. Reiter, “On User Choice

in Graphical Password Schemes,” Proc. 13th Usenix Se-­

curity Symp., Usenix Assoc., 2004, pp. 151–164.

J. Thorpe and P.C.V. Oorschot, “Graphical Dictionar-

ies and the Memorable Space of Graphical Passwords,”

Proc. 13th Usenix Security Symp., Usenix Assoc., 2004,

pp. 135–150.

S.T. Kent, “Internet Privacy Enhanced Mail,” Comm.

ACM, vol. 36, no. 8, 1993, pp. 48–60.

L. Lundblade, “A Review of E-Mail Security Standards,”

Proc. 7th Ann. Conf. Internet Soc. (INET 97), 1997;

www.isoc.org/inet97/proceedings/A4/A4_1.HTM.

S. Garfinkel, “Signed, Sealed and Delivered,” CSO On-­

line, April 2004, www.csoonline.com/read/040104/

shop.html.

B. Schneier, Applied Cryptography, 2nd ed., Wiley,

1996.

S.L. Garfinkel, Design Principles and Patterns for Com-­

puter Systems that Are Simultaneously Secure and Us-­

able, PhD thesis, Mass. Inst. of Technology, 2005.

A. Whitten and J.D. Tygar, “Why Johnny Can’t Encrypt:

A Usability Evaluation of PGP 5.0,” Proc. 8th Usenix

Security Symp., Usenix Assoc., 1999, pp. 169–184.

S.L. Garfinkel and R.C. Miller, “Johnny 2: A User Test

of Key Continuity Management with S/MIME and Out-

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Table 1. System designs and how they satisfy Kai-Ping Yee’s guidelines for usable security.

Salmon Network-in-a-Box Kazaa Pretty Good
Privacy Plug-in

Path of least resistance ✗ ✗

Active authorization ✗ ✗ ✗

Revocability ✗ ✗ ✗

Visibility ✗ ✗ ✗

Self-awareness ✗ ✗ ✗ ✗

Trusted path

Expressiveness ✗ ✗ ✗

Relevant boundaries ✗ ✗ ✗

Identifiability ✗ ✗ ✗

Foresight ✗ ✗

MAY/JUNE 2008� 21

A Brief Introduction to Usable Security

look Express,” Proc. Symp. Usable Privacy and Secu-­

rity, ACM Press, 2005, pp. 13–24.

K.-P. Yee, “User Interaction Design for Secure Systems,”

Proc. 4th Int’l Conf. Information and Communications

Security, Springer-Verlag, 2002, pp. 278–290.

K.-P. Yee, “Secure Interaction Design,” 2007, http://

zesty.ca/sid.

R.W. Reeder and R.A. Maxion, “User Interface Depend-

ability through Goal-Error Prevention,” Proc. Int’l

Conf. Dependable Systems & Networks, IEEE CS Press,

2005, pp. 60–69.

N. Borizov, I. Goldberg, and D. Wagner, “Intercepting

Mobile Communications: The Insecurity of 802.11,”

Proc. Int’l Conf. Mobile Computing and Networking

(Mobicom 01), ACM Press, 2001, pp. 180–189.

S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in

the Key Scheduling Algorithm of RC4,” Proc. 8th Ann.

Workshop Selected Areas in Cryptography, Springer,

2001, pp. 1–24.

D. Balfanz et al., “Network-in-a-Box: How to Set Up a

Secure Wireless Network in Under a Minute,” Usenix

Security Symp., Usenix Assoc., 2004, pp. 207–222.

N.S. Good and A. Krekelberg, “Usability and Privacy: A

19.

20.

21.

22.

23.

24.

25.

Study of Kazaa P2P File-Sharing,” Proc. Human-Com-­

puter Interactions (CHI 03), vol. 5, ACM Press, 2003,

pp. 137–144.

Bryan D. Payne is a research scientist in the School of Com-

puter Science at the Georgia Institute of Technology,

and is working toward his PhD in computer science.

His current research focuses on techniques for moni-

toring and analyzing the memory of systems running

inside virtual machines. Payne has an MS in computer

science from the University of Maryland. Contact him

at bdpayne@cc.gatech.edu.

W. Keith Edwards is an associate professor in the School

of Interactive Computing at the Georgia Institute of

Technology. His research focuses on bringing a hu-

man-centered perspective to lower-layer technology

concerns such as security and networking infrastruc-

ture. He is especially interested in increasing the abil-

ity of home users to better manage their own online

security. Edwards has a PhD in computer science from

Georgia Institute of Technology. Contact him at keith@

cc.gatech.edu.

To order call 800-405-1619 • http://mitpress.mit.eduThe MIT Press

The MIT Press

A Semantic Web Primer
Second Edition
Grigoris Antoniou and Frank van Harmelen
“This book is essential reading for anyone who wishes to learn
about the Semantic Web. By gathering the fundamental topics into
a single volume, it spares the novice from having to read a dozen
dense technical specifi cations. I have used the fi rst edition in my
Semantic Web course with much success.” — Jeff Hefl in, Associ-
ate Professor, Department of Computer Science and Engineering,
Lehigh University
Cooperative Information Systems series • 288 pp., 38 illus., $42 cloth

NOW IN PAPER

Document Engineering
Analyzing and Designing Documents
for Business Informatics and Web Services
Robert J. Glushko and Tim McGrath
“This manifesto for the document engineering revolution gives
you the what, the why, and the how of automating your business
processes with XML, leading to greater cost savings, higher quality,
and more fl exibility.” — Hal Varian, Haas School of Business and
Department of Economics, University of California, Berkeley
278 pp., $22 paper

